Ultra-low volume intradermal administration of radiation-attenuated sporozoites with the glycolipid adjuvant 7DW8-5 completely protects mice against malaria.

Felicia N Watson, Melanie J Shears, Anya C Kalata, Caroline J Duncombe, A Mariko Seilie, Chris Chavtur, Ethan Conrad, Irene Cruz Talavera, Andrew Raappana, D Noah Sather, Sumana Chakravarty, B Kim Lee Sim, Stephen L Hoffman, Moriya Tsuji, Sean C Murphy
Author Information
  1. Felicia N Watson: Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA.
  2. Melanie J Shears: Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
  3. Anya C Kalata: Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
  4. Caroline J Duncombe: Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA.
  5. A Mariko Seilie: Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
  6. Chris Chavtur: Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
  7. Ethan Conrad: Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
  8. Irene Cruz Talavera: Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
  9. Andrew Raappana: Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA.
  10. D Noah Sather: Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA.
  11. Sumana Chakravarty: Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA.
  12. B Kim Lee Sim: Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA.
  13. Stephen L Hoffman: Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA.
  14. Moriya Tsuji: Aaron Diamond AIDS Research Center, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
  15. Sean C Murphy: Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA. murphysc@uw.edu.

Abstract

Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage Plasmodium infection by inducing liver-resident memory CD8 T cells to target parasites in the liver. Such T cells can be induced by 'Prime-and-trap' vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver. Prime-and-trap confers durable protection in mice, and efforts are underway to translate this vaccine strategy to the clinic. However, it is unclear whether the RAS trapping dose must be strictly administered by the IV route. Here we show that intradermal (ID) RAS administration can be as effective as IV administration if RAS are co-administrated with the glycolipid adjuvant 7DW8-5 in an ultra-low inoculation volume. In mice, the co-administration of RAS and 7DW8-5 in ultra-low ID volumes (2.5 µL) was completely protective and dose sparing compared to standard volumes (10-50 µL) and induced protective levels of CSP-specific CD8 T cells in the liver. Our finding that adjuvants and ultra-low volumes are required for ID RAS efficacy may explain why prior reports about higher volumes of unadjuvanted ID RAS proved less effective than IV RAS. The ID route may offer significant translational advantages over the IV route and could improve sporozoite vaccine development.

References

  1. Cell Host Microbe. 2021 May 12;29(5):752-756.e4 [PMID: 33857426]
  2. Cell Rep. 2014 Apr 24;7(2):436-447 [PMID: 24703850]
  3. mSphere. 2021 Apr 7;6(2): [PMID: 33827910]
  4. J Drugs Dermatol. 2018 Jan 1;17(1):88-96 [PMID: 29320593]
  5. Bull World Health Organ. 2011 Mar 1;89(3):221-6 [PMID: 21379418]
  6. Proc Natl Acad Sci U S A. 1988 Jan;85(2):573-6 [PMID: 2963334]
  7. Immunity. 2020 Oct 13;53(4):733-744.e8 [PMID: 32946741]
  8. Vaccine. 2009 Jun 2;27(27):3675-80 [PMID: 19071177]
  9. Clin Exp Immunol. 2009 Feb;155(2):320-9 [PMID: 19040612]
  10. Infect Immun. 2014 Dec;82(12):5143-53 [PMID: 25267837]
  11. J Virol. 2002 May;76(9):4536-46 [PMID: 11932419]
  12. J Infect Dis. 2014 Nov 1;210(9):1508-16 [PMID: 24823625]
  13. J Immunol. 2015 Sep 15;195(6):2710-21 [PMID: 26254338]
  14. Am J Trop Med Hyg. 2016 Mar;94(3):663-673 [PMID: 26711509]
  15. Science. 2013 Sep 20;341(6152):1359-65 [PMID: 23929949]
  16. Nat Rev Immunol. 2008 Feb;8(2):107-19 [PMID: 18219309]
  17. Lancet. 2021 May 15;397(10287):1809-1818 [PMID: 33964223]
  18. J Clin Invest. 2014 Jan;124(1):140-4 [PMID: 24292709]
  19. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2711-2716 [PMID: 28223498]
  20. Vaccines (Basel). 2020 Jul 21;8(3): [PMID: 32708179]
  21. Vaccine. 2020 Jun 15;38(29):4592-4600 [PMID: 32444192]
  22. Nature. 2017 Feb 23;542(7642):445-449 [PMID: 28199305]
  23. J Immunol. 2018 Oct 1;201(7):1984-1993 [PMID: 30127085]
  24. Vaccine. 2013 Jul 25;31(34):3410-6 [PMID: 23063834]
  25. Parasite Immunol. 2019 Jul;41(7):e12622 [PMID: 30854655]
  26. Bioinformatics. 2011 Jun 15;27(12):1739-40 [PMID: 21546393]
  27. PLoS Pathog. 2020 Sep 8;16(9):e1008799 [PMID: 32898164]
  28. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6055-60 [PMID: 23530242]
  29. Lancet Infect Dis. 2017 May;17(5):498-509 [PMID: 28216244]
  30. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13010-5 [PMID: 20616071]
  31. Wellcome Open Res. 2018 Dec 12;3:159 [PMID: 30828645]
  32. Science. 2011 Oct 28;334(6055):475-80 [PMID: 21903775]
  33. PLoS One. 2016 Apr 12;11(4):e0153449 [PMID: 27070430]
  34. Am J Trop Med Hyg. 2018 Aug;99(2):338-349 [PMID: 29943719]
  35. Nat Commun. 2021 Oct 14;12(1):6018 [PMID: 34650045]
  36. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  37. Malar J. 2015 Jan 28;14:36 [PMID: 25627880]
  38. J Insect Physiol. 1965 Mar;11:347-53 [PMID: 14330766]
  39. Curr Top Microbiol Immunol. 2012;351:77-112 [PMID: 21472533]
  40. Am J Trop Med Hyg. 2012 Mar;86(3):383-94 [PMID: 22403305]
  41. Clin Microbiol Rev. 2009 Jan;22(1):13-36, Table of Contents [PMID: 19136431]
  42. Vaccine. 2015 Dec 22;33(52):7452-61 [PMID: 26469720]
  43. Travel Med Infect Dis. 2020 Sep - Oct;37:101868 [PMID: 32898704]
  44. Vaccine. 2016 Jun 14;34(28):3229-34 [PMID: 27160038]
  45. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  46. Am J Trop Med Hyg. 2014 Sep;91(3):471-480 [PMID: 25070995]
  47. Cell Host Microbe. 2009 Dec 17;6(6):551-62 [PMID: 20006843]
  48. mBio. 2018 Nov 20;9(6): [PMID: 30459199]
  49. Am J Trop Med Hyg. 2021 Jan;104(1):283-293 [PMID: 33205741]
  50. JCI Insight. 2017 Jan 12;2(1):e89154 [PMID: 28097230]
  51. Nat Commun. 2019 Sep 2;10(1):3950 [PMID: 31477704]
  52. J Control Release. 2015 Apr 28;204:30-7 [PMID: 25725360]
  53. Am J Trop Med Hyg. 2022 Feb 28;106(4):1227-1236 [PMID: 35226868]
  54. Sci Rep. 2017 Sep 4;7(1):10372 [PMID: 28871201]
  55. Trends Parasitol. 2013 Jun;29(6):304-10 [PMID: 23608185]
  56. Malar J. 2010 Dec 15;9:362 [PMID: 21159170]
  57. PLoS Pathog. 2022 Jul 6;18(7):e1010671 [PMID: 35793394]
  58. F1000Res. 2018 May 30;7: [PMID: 29904582]
  59. Heliyon. 2016 Sep 08;2(9):e00151 [PMID: 27656684]
  60. J Immunol. 2000 Aug 1;165(3):1453-62 [PMID: 10903750]
  61. Eur J Immunol. 2021 May;51(5):1153-1165 [PMID: 33486759]
  62. PLoS Pathog. 2021 Nov 8;17(11):e1010042 [PMID: 34748617]
  63. Cell Microbiol. 2007 May;9(5):1215-22 [PMID: 17223931]
  64. Nat Med. 2016 Jun;22(6):614-23 [PMID: 27158907]
  65. Immunity. 2016 Oct 18;45(4):889-902 [PMID: 27692609]
  66. Front Immunol. 2018 Dec 11;9:2748 [PMID: 30619241]
  67. Cell Host Microbe. 2020 Jun 10;27(6):950-962.e7 [PMID: 32396839]
  68. Parasite Immunol. 2012 Dec;34(12):562-9 [PMID: 23171040]
  69. Infect Immun. 2016 Jul 21;84(8):2233-2242 [PMID: 27217420]
  70. Nature. 2022 Dec;612(7940):534-539 [PMID: 36477528]
  71. Malar J. 2012 Dec 17;11:421 [PMID: 23244590]

Grants

  1. F31 AI169754/NIAID NIH HHS
  2. R01 AI141857/NIAID NIH HHS

MeSH Term

Mice
Animals
Sporozoites
Malaria Vaccines
CD8-Positive T-Lymphocytes
Glycolipids
Malaria
Adjuvants, Immunologic
Adjuvants, Pharmaceutic
Mice, Inbred BALB C

Chemicals

Malaria Vaccines
Glycolipids
Adjuvants, Immunologic
Adjuvants, Pharmaceutic

Word Cloud

Created with Highcharts 10.0.0RASIVIDTcellsvolumescancompletelyliverdosemicerouteadministration7DW8-5ultra-lowsporozoiteCD8inducedvaccineintradermaleffectiveglycolipidadjuvantvolumeµLprotectivemayRadiation-attenuatedvaccinespreventbloodstagePlasmodiuminfectioninducingliver-residentmemorytargetparasites'Prime-and-trap'vaccinationcombinesDNAprimingPyoeliicircumsporozoiteproteinCSPsubsequentintravenousliver-homing"trap"activatedexpandingPrime-and-trapconfersdurableprotectioneffortsunderwaytranslatestrategyclinicHoweverunclearwhethertrappingmuststrictlyadministeredshowco-administratedinoculationco-administration25sparingcomparedstandard10-50levelsCSP-specificfindingadjuvantsrequiredefficacyexplainpriorreportshigherunadjuvantedprovedlessoffersignificanttranslationaladvantagesimprovedevelopmentUltra-lowradiation-attenuatedsporozoitesprotectsmalaria

Similar Articles

Cited By