A network analysis bridging the gap between the big five personality traits and burnout among medical staff.

Yifei Wang, Lin Wu, Chang Liu, Kuiliang Li, Mei Wang, Tingwei Feng, Qingyi Wang, Wu Chao, Lei Ren, Xufeng Liu
Author Information
  1. Yifei Wang: Department of Military Medical Psychology, Air Force Medical University, 169 Street, 710032, Xi'an, China.
  2. Lin Wu: Department of Military Medical Psychology, Air Force Medical University, 169 Street, 710032, Xi'an, China.
  3. Chang Liu: BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 3168, Clayton, Australia.
  4. Kuiliang Li: Department of Psychology, Army Medical University, 400038, Chongqing, China.
  5. Mei Wang: Department of infectious diseases, Juxian Hospital of Traditional Chinese Medicine, Shandong Traditional Chinese Medicine University, 23 Street, 276500, Rizhao, China.
  6. Tingwei Feng: Department of Military Medical Psychology, Air Force Medical University, 169 Street, 710032, Xi'an, China.
  7. Qingyi Wang: Department of Foreign Language Teaching and Research of Basic Ministry, Air Force Medical University, 169 Street, 710032, Xi'an, China.
  8. Wu Chao: School of Nursing, Air Force Medical University, 169 Street, 710032, Xi'an, China.
  9. Lei Ren: Military Psychology Section, Logistics University of PAP, 300309, Tianjin, China. rl_fmmu@163.com.
  10. Xufeng Liu: Department of Military Medical Psychology, Air Force Medical University, 169 Street, 710032, Xi'an, China. lxf_fmmu@163.com.

Abstract

BACKGROUND: Burnout is a common issue among medical professionals, and one of the well-studied predisposing factors is the Big Five personality traits. However, no studies have explored the relationships between these traits and burnout from a trait-to-component perspective. To understand the specific connections between each Big Five trait and burnout components, as well as the bridging effects of each trait on burnout, we employed network analysis.
METHODS: A cluster sampling method was used to select a total of 420 Chinese medical personnel. The 15-item Chinese Big Five Personality Inventory-15 (CBF-PI-15) assessed the Big Five personality traits, while the 15-item Maslach Burnout Inventory-General Survey (MBI-GS) assessed burnout components. Network analysis was used to estimate network structure of Big Five personality traits and burnout components and calculate the bridge expected influence.
RESULTS: The study revealed distinct and clear relationships between the Big Five personality traits and burnout components. For instance, Neuroticism was positively related to Doubt significance and Worthwhile, while Conscientiousness was negatively related to Accomplish all tasks. Among the Big Five traits, Neuroticism displayed the highest positive bridge expected influence, while Conscientiousness displayed the highest negative bridge expected influence.
CONCLUSIONS: The network model provides a means to investigate the connections between the Big Five personality traits and burnout components among medical professionals. This study offers new avenues for thought and potential targets for burnout prevention and treatment in medical personnel, which can be further explored and tested in clinical settings.

Keywords

References

  1. Int J Public Health. 2022 Sep 23;67:1604797 [PMID: 36213139]
  2. Psychol Methods. 2018 Dec;23(4):617-634 [PMID: 29595293]
  3. Mayo Clin Proc. 2022 Mar;97(3):491-506 [PMID: 35246286]
  4. Psychol Methods. 2023 Jul 10;: [PMID: 37428726]
  5. J Pers. 2012 Apr;80(2):403-27 [PMID: 21449937]
  6. BMC Health Serv Res. 2014 Jul 28;14:325 [PMID: 25066375]
  7. Urology. 2022 Sep;167:43-48 [PMID: 35292294]
  8. Front Psychol. 2023 Oct 16;14:1266236 [PMID: 37908826]
  9. Int J Environ Res Public Health. 2020 Jan 22;17(3): [PMID: 31979154]
  10. BMC Nurs. 2021 Aug 17;20(1):147 [PMID: 34404401]
  11. Mayo Clin Proc. 2018 Nov;93(11):1571-1580 [PMID: 30001832]
  12. PLoS One. 2019 Aug 27;14(8):e0221621 [PMID: 31454383]
  13. Front Psychiatry. 2023 Mar 23;14:1145606 [PMID: 37032929]
  14. BMC Psychol. 2023 Feb 19;11(1):49 [PMID: 36804929]
  15. Annu Rev Psychol. 2001;52:397-422 [PMID: 11148311]
  16. Perspect Psychol Sci. 2017 Nov;12(6):999-1020 [PMID: 28873325]
  17. Front Psychol. 2022 Apr 11;13:762406 [PMID: 35496161]
  18. Eur Neuropsychopharmacol. 2018 Nov;28(11):1232-1246 [PMID: 30509450]
  19. Scand J Work Environ Health. 2021 Apr 1;47(3):169-170 [PMID: 33604675]
  20. Eur J Oncol Nurs. 2017 Oct;30:91-96 [PMID: 29031320]
  21. Behav Res Methods. 2018 Feb;50(1):195-212 [PMID: 28342071]
  22. Psychiatry Clin Neurosci. 2008 Apr;62(2):174-6 [PMID: 18412839]
  23. Front Psychiatry. 2022 Jul 11;13:917833 [PMID: 35898626]
  24. Health Soc Care Community. 2022 Nov;30(6):e5482-e5494 [PMID: 35993911]
  25. Front Psychol. 2021 Jan 13;11:623912 [PMID: 33519650]
  26. Medicine (Baltimore). 2020 Jun 26;99(26):e20992 [PMID: 32590814]
  27. Acta Med Port. 2012 May-Jun;25(3):145-55 [PMID: 23069234]
  28. Psychol Res Behav Manag. 2019 Mar 18;12:169-177 [PMID: 30936758]
  29. J Nurs Manag. 2022 May;30(4):954-961 [PMID: 35246900]
  30. Behav Res Ther. 2016 Nov;86:95-104 [PMID: 27424882]
  31. J Pers Soc Psychol. 1999 Apr;76(4):613-27 [PMID: 10234848]
  32. BMJ Open. 2018 Jul 23;8(7):e018720 [PMID: 30037857]
  33. Psychol Methods. 2023 Aug;28(4):925-946 [PMID: 34843277]
  34. Surgeon. 2018 Feb;16(1):12-19 [PMID: 26993760]
  35. Int J Environ Res Public Health. 2022 Jan 21;19(3): [PMID: 35162210]
  36. Multivariate Behav Res. 2021 Mar-Apr;56(2):353-367 [PMID: 31179765]
  37. Psychiatry Res. 2022 Nov;317:114863 [PMID: 36191555]
  38. J Occup Environ Med. 2016 Apr;58(4):e128-32 [PMID: 27058490]
  39. Front Public Health. 2022 Aug 10;10:919692 [PMID: 36033796]
  40. BJPsych Bull. 2017 Aug;41(4):197-204 [PMID: 28811913]
  41. J Behav Addict. 2023 Feb 10;12(1):128-136 [PMID: 36763335]
  42. J Soc Psychol. 2006 Feb;146(1):31-50 [PMID: 16480120]
  43. Int J Nurs Stud. 2015 Jan;52(1):240-9 [PMID: 25062805]
  44. J Adv Nurs. 2008 Apr;62(1):84-95 [PMID: 18352967]
  45. Front Psychol. 2023 Mar 31;14:1087977 [PMID: 37063574]

Grants

  1. KJ2022A000415/The Key Project of Air Force Equipment Comprehensive Research
  2. KJ2022A000415/The Key Project of Air Force Equipment Comprehensive Research
  3. KJ2022A000415/The Key Project of Air Force Equipment Comprehensive Research
  4. KJ2022A000415/The Key Project of Air Force Equipment Comprehensive Research
  5. KJ2022A000415/The Key Project of Air Force Equipment Comprehensive Research
  6. 2023KXKT061/Research on the characteristics of attention network based on multi-modal indicators
  7. 2023KXKT018/The Development Mechanism and Adustment Strategy of Nursing Staff Burnout in the post-epidemic Era

Word Cloud

Created with Highcharts 10.0.0BigtraitsburnoutFivepersonalitymedicalcomponentsnetworkanalysisBurnoutamongbridgeexpectedinfluenceprofessionalsexploredrelationshipsconnectionstraitbridgingusedChinesepersonnel15-itemassessedNetworkstudyNeuroticismrelatedConscientiousnessdisplayedhighestfivestaffBACKGROUND:commonissueonewell-studiedpredisposingfactorsHoweverstudiestrait-to-componentperspectiveunderstandspecificwelleffectsemployedMETHODS:clustersamplingmethodselecttotal420PersonalityInventory-15CBF-PI-15MaslachInventory-GeneralSurveyMBI-GSestimatestructurecalculateRESULTS:revealeddistinctclearinstancepositivelyDoubtsignificanceWorthwhilenegativelyAccomplishtasksAmongpositivenegativeCONCLUSIONS:modelprovidesmeansinvestigateoffersnewavenuesthoughtpotentialtargetspreventiontreatmentcantestedclinicalsettingsgapbigMedical

Similar Articles

Cited By