Sustainable biosurfactant production from secondary feedstock-recent advances, process optimization and perspectives.

Yahui Miao, Ming Ho To, Muhammad Ahmar Siddiqui, Huaimin Wang, Sofie Lodens, Shauhrat S Chopra, Guneet Kaur, Sophie L K W Roelants, Carol Sze Ki Lin
Author Information
  1. Yahui Miao: School of Energy and Environment, City University of Hong Kong, Kowloon, China.
  2. Ming Ho To: School of Energy and Environment, City University of Hong Kong, Kowloon, China.
  3. Muhammad Ahmar Siddiqui: School of Energy and Environment, City University of Hong Kong, Kowloon, China.
  4. Huaimin Wang: McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, United States.
  5. Sofie Lodens: Bio Base Europe Pilot Plant, Ghent, Belgium.
  6. Shauhrat S Chopra: School of Energy and Environment, City University of Hong Kong, Kowloon, China.
  7. Guneet Kaur: School of Engineering, University of Guelph, Guelph, ON, Canada.
  8. Sophie L K W Roelants: Bio Base Europe Pilot Plant, Ghent, Belgium.
  9. Carol Sze Ki Lin: School of Energy and Environment, City University of Hong Kong, Kowloon, China.

Abstract

Biosurfactants have garnered increased attention lately due to their superiority of their properties over fossil-derived counterparts. While the cost of production remains a significant hurdle to surpass synthetic surfactants, biosurfactants have been anticipated to gain a larger market share in the coming decades. Among these, glycolipids, a type of low-molecular-weight biosurfactant, stand out for their efficacy in reducing surface and interfacial tension, which made them highly sought-after for various surfactant-related applications. Glycolipids are composed of hydrophilic carbohydrate moieties linked to hydrophobic fatty acid chains through ester bonds that mainly include rhamnolipids, trehalose lipids, sophorolipids, and mannosylerythritol lipids. This review highlights the current landscape of glycolipids and covers specific glycolipid productivity and the diverse range of products found in the global market. Applications such as bioremediation, food processing, petroleum refining, biomedical uses, and increasing agriculture output have been discussed. Additionally, the latest advancements in production cost reduction for glycolipid and the challenges of utilizing second-generation feedstocks for sustainable production are also thoroughly examined. Overall, this review proposes a balance between environmental advantages, economic viability, and societal benefits through the optimized integration of secondary feedstocks in biosurfactant production.

Keywords

References

  1. Environ Res. 2021 Feb;193:110443 [PMID: 33171120]
  2. Front Chem. 2022 Mar 10;10:847767 [PMID: 35360539]
  3. Bioprocess Biosyst Eng. 2023 Aug;46(8):1175-1194 [PMID: 37338581]
  4. J Basic Microbiol. 2019 Mar;59(3):238-248 [PMID: 30600533]
  5. Front Bioeng Biotechnol. 2020 May 07;8:434 [PMID: 32457894]
  6. Adv Colloid Interface Sci. 2020 Jan;275:102061 [PMID: 31767119]
  7. J Dairy Sci. 2021 Apr;104(4):4002-4011 [PMID: 33589263]
  8. Environ Technol. 2018 Jul;39(13):1733-1744 [PMID: 28562189]
  9. Appl Biochem Biotechnol. 2021 Nov;193(11):3855-3866 [PMID: 34302592]
  10. Sci Total Environ. 2021 Nov 20;796:149013 [PMID: 34271380]
  11. Carbohydr Res. 2015 Oct 30;416:59-69 [PMID: 26359535]
  12. Environ Pollut. 2021 May 1;276:116742 [PMID: 33621735]
  13. Bioresour Technol. 2021 Oct;337:125474 [PMID: 34320754]
  14. Environ Pollut. 2017 Jul;226:94-103 [PMID: 28411499]
  15. Biotechnol Adv. 2023 Nov;68:108198 [PMID: 37330152]
  16. Appl Microbiol Biotechnol. 2022 Nov;106(22):7477-7489 [PMID: 36222896]
  17. Chemosphere. 2020 Aug;252:126349 [PMID: 32443257]
  18. PLoS One. 2016 Jun 21;11(6):e0157858 [PMID: 27327162]
  19. Bioresour Technol. 2017 Oct;241:1101-1117 [PMID: 28579178]
  20. AMB Express. 2019 May 7;9(1):62 [PMID: 31065818]
  21. Bioresour Technol. 2020 May;303:122852 [PMID: 32036326]
  22. Bioengineered. 2021 Dec;12(2):9550-9560 [PMID: 34709115]
  23. Colloids Surf B Biointerfaces. 2022 Jun;214:112453 [PMID: 35305323]
  24. RSC Adv. 2019 Mar 11;9(14):7932-7947 [PMID: 35521199]
  25. Bioresour Technol. 2022 Jan;343:126059 [PMID: 34606921]
  26. Biotechnol Prog. 2020 Sep;36(5):e3030 [PMID: 32463167]
  27. Theranostics. 2019 Sep 19;9(23):6764-6779 [PMID: 31660067]
  28. Int J Mol Sci. 2014 Jul 15;15(7):12523-42 [PMID: 25029542]
  29. Appl Microbiol Biotechnol. 2013 Feb;97(3):1103-11 [PMID: 22987201]
  30. Biodegradation. 2019 Aug;30(4):215-233 [PMID: 29725781]
  31. Food Res Int. 2019 Feb;116:737-744 [PMID: 30717003]
  32. Front Bioeng Biotechnol. 2020 Jul 29;8:861 [PMID: 32850725]
  33. World J Microbiol Biotechnol. 2021 Feb 22;37(4):55 [PMID: 33615389]
  34. J Appl Microbiol. 2019 Jul;127(1):12-28 [PMID: 30828919]
  35. Food Sci Nutr. 2019 Feb 17;7(3):937-948 [PMID: 30918636]
  36. Adv Colloid Interface Sci. 2021 Feb;288:102340 [PMID: 33383470]
  37. Biodegradation. 2019 Aug;30(4):301-312 [PMID: 30937572]
  38. J Microbiol Biotechnol. 2015 Apr;25(4):439-47 [PMID: 25370728]
  39. Bioresour Technol. 2022 Nov;364:128021 [PMID: 36167175]
  40. Am J Med. 1978 Aug;65(2):298-302 [PMID: 686014]
  41. Carbohydr Res. 2013 May 24;373:82-8 [PMID: 23584591]
  42. Bioresour Technol. 2019 Jan;272:19-25 [PMID: 30296609]
  43. Food Microbiol. 2021 May;95:103683 [PMID: 33397615]
  44. Bioresour Technol. 2022 Sep;360:127578 [PMID: 35798165]
  45. Int J Mol Sci. 2016 Mar 18;17(3):401 [PMID: 26999123]
  46. Microb Cell Fact. 2021 Feb 8;20(1):40 [PMID: 33557838]
  47. Antibiotics (Basel). 2021 Dec 17;10(12): [PMID: 34943758]
  48. Theranostics. 2019 Jan 24;9(3):691-707 [PMID: 30809302]
  49. Bioresour Technol. 2020 Apr;302:122847 [PMID: 32008863]
  50. Bioresour Technol. 2022 Feb;346:126593 [PMID: 34942344]
  51. N Biotechnol. 2015 Dec 25;32(6):559-68 [PMID: 25796474]
  52. Colloids Surf B Biointerfaces. 2013 May 1;105:113-9 [PMID: 23352952]
  53. Chemosphere. 2021 Feb;265:129090 [PMID: 33293052]
  54. Environ Sci Process Impacts. 2015 May;17(5):975-84 [PMID: 25865172]
  55. Adv Biochem Eng Biotechnol. 2022;181:1-15 [PMID: 35302176]
  56. Pharmaceutics. 2022 Feb 04;14(2): [PMID: 35214090]
  57. Colloids Surf B Biointerfaces. 2019 Sep 1;181:943-952 [PMID: 31382344]
  58. Bioresour Technol. 2023 Feb;369:128426 [PMID: 36462764]
  59. J Basic Microbiol. 2020 Jan;60(1):14-21 [PMID: 31696960]
  60. Z Naturforsch C J Biosci. 2011 Jul-Aug;66(7-8):394-402 [PMID: 21950164]
  61. Waste Manag. 2021 Apr 1;124:195-202 [PMID: 33631444]
  62. Sci Rep. 2022 Mar 8;12(1):3801 [PMID: 35260619]
  63. World J Microbiol Biotechnol. 2015 May;31(5):691-706 [PMID: 25739564]
  64. Bioresour Technol. 2022 Sep;360:127617 [PMID: 35840022]
  65. Clin Transl Immunology. 2022 Jul 03;11(7):e1401 [PMID: 35795321]
  66. Arch Microbiol. 2021 Oct;203(8):5043-5054 [PMID: 34292347]
  67. Appl Microbiol Biotechnol. 2010 May;86(5):1323-36 [PMID: 20336292]
  68. Biotechnol Lett. 2004 Jul;26(13):1087-93 [PMID: 15218385]
  69. Appl Environ Microbiol. 1979 Mar;37(3):414-20 [PMID: 453822]
  70. Adv Exp Med Biol. 2010;672:261-80 [PMID: 20545289]
  71. Bioengineering (Basel). 2023 May 08;10(5): [PMID: 37237630]
  72. Curr Opin Biotechnol. 2022 Oct;77:102769 [PMID: 35985133]
  73. Prep Biochem Biotechnol. 2020;50(8):842-848 [PMID: 32302260]
  74. J Appl Microbiol. 2015 Jul;119(1):215-24 [PMID: 25898775]
  75. Biotechnol Prog. 2021 Mar;37(2):e3093 [PMID: 33067929]
  76. Appl Microbiol Biotechnol. 2013 Feb;97(3):1005-16 [PMID: 23280539]
  77. Microorganisms. 2022 Dec 02;10(12): [PMID: 36557643]
  78. J Anim Sci Biotechnol. 2021 Jul 12;12(1):81 [PMID: 34247658]
  79. Antimicrob Agents Chemother. 2017 Apr 24;61(5): [PMID: 28242666]
  80. Biochim Biophys Acta. 1956 May;20(2):299-309 [PMID: 13328853]
  81. Bioresour Technol. 2014 Sep;168:41-8 [PMID: 24972915]
  82. Mar Life Sci Technol. 2022 Jun 27;4(3):373-383 [PMID: 37073164]
  83. Curr Microbiol. 2021 May;78(5):1813-1822 [PMID: 33772618]
  84. Pharmaceutics. 2022 Dec 14;14(12): [PMID: 36559292]
  85. Environ Pollut. 2021 Jan 15;269:116101 [PMID: 33307395]
  86. Front Bioeng Biotechnol. 2022 Jun 17;10:913351 [PMID: 35782519]
  87. Biotechnol Lett. 2007 Sep;29(9):1341-7 [PMID: 17541506]
  88. Front Oncol. 2021 Mar 16;11:622470 [PMID: 33796459]
  89. Environ Res. 2023 May 1;224:115523 [PMID: 36805896]
  90. J Biosci Bioeng. 2015 Mar;119(3):317-22 [PMID: 25240400]
  91. Appl Biochem Biotechnol. 2022 Apr;194(4):1755-1774 [PMID: 34982373]
  92. 3 Biotech. 2020 Mar;10(3):120 [PMID: 32117681]
  93. Environ Res. 2022 Dec;215(Pt 1):114323 [PMID: 36115419]
  94. Molecules. 2022 Aug 29;27(17): [PMID: 36080322]
  95. Biotechnol Appl Biochem. 2018 Sep;65(5):690-700 [PMID: 29457659]
  96. Bioresour Technol. 2019 Jun;281:421-428 [PMID: 30849698]
  97. Nat Rev Microbiol. 2022 Oct;20(10):621-635 [PMID: 35115704]
  98. Heliyon. 2020 May 06;6(5):e03861 [PMID: 32405547]
  99. Biotechnol Adv. 2022 Jan-Feb;54:107788 [PMID: 34166752]
  100. AMB Express. 2019 May 6;9(1):61 [PMID: 31062183]
  101. Bioresour Technol. 2023 Jul;379:128993 [PMID: 37011850]
  102. Bioresour Technol. 2021 Apr;325:124682 [PMID: 33486411]
  103. Bioresour Technol. 2021 Jan;320(Pt A):124347 [PMID: 33160213]
  104. Int J Mol Sci. 2011 Feb 18;12(2):1232-44 [PMID: 21541055]
  105. Sci Total Environ. 2021 Dec 10;799:149230 [PMID: 34364275]

Word Cloud

Created with Highcharts 10.0.0productionbiosurfactantglycolipidsecondarycostmarketglycolipidslipidsreviewfeedstocksBiosurfactantsgarneredincreasedattentionlatelyduesuperioritypropertiesfossil-derivedcounterpartsremainssignificanthurdlesurpasssyntheticsurfactantsbiosurfactantsanticipatedgainlargersharecomingdecadesAmongtypelow-molecular-weightstandefficacyreducingsurfaceinterfacialtensionmadehighlysought-aftervarioussurfactant-relatedapplicationsGlycolipidscomposedhydrophiliccarbohydratemoietieslinkedhydrophobicfattyacidchainsesterbondsmainlyincluderhamnolipidstrehalosesophorolipidsmannosylerythritolhighlightscurrentlandscapecoversspecificproductivitydiverserangeproductsfoundglobalApplicationsbioremediationfoodprocessingpetroleumrefiningbiomedicalusesincreasingagricultureoutputdiscussedAdditionallylatestadvancementsreductionchallengesutilizingsecond-generationsustainablealsothoroughlyexaminedOverallproposesbalanceenvironmentaladvantageseconomicviabilitysocietalbenefitsoptimizedintegrationSustainablefeedstock-recentadvancesprocessoptimizationperspectivesbiorefineryfeedstocksustainabilityvalorization

Similar Articles

Cited By