Mapping COVID-19's potential infection risk based on land use characteristics: A case study of commercial activities in two Egyptian cities.

Karim I Abdrabo, Mahmoud Mabrouk, Haoying Han, Mohamed Saber, Sameh A Kantoush, Tetsuya Sumi
Author Information
  1. Karim I Abdrabo: Disaster Prevention Research Institute (DPRI), Kyoto University, Kyoto, Japan.
  2. Mahmoud Mabrouk: College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China.
  3. Haoying Han: College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China.
  4. Mohamed Saber: Disaster Prevention Research Institute (DPRI), Kyoto University, Kyoto, Japan.
  5. Sameh A Kantoush: Disaster Prevention Research Institute (DPRI), Kyoto University, Kyoto, Japan.
  6. Tetsuya Sumi: Disaster Prevention Research Institute (DPRI), Kyoto University, Kyoto, Japan.

Abstract

The contagious COVID-19 has recently emerged and evolved into a world-threatening pandemic outbreak. After pursuing rigorous prophylactic measures two years ago, most activities globally reopened despite the emergence of lethal genetic strains. In this context, assessing and mapping activity characteristics-based hot spot regions facilitating infectious transmission is essential. Hence, our research question is: How can the potential hotspots of COVID-19 risk be defined intra-cities based on the spatial planning of commercial activity in particular? In our research, Zayed and October cities, Egypt, characterized by various commercial activities, were selected as testbeds. First, we analyzed each activity's spatial and morphological characteristics and potential infection risk based on the Centre for Disease Control and Prevention (CDCP) criteria and the Kriging Interpolation method. Then, using Google Mobility, previous reports, and semi-structured interviews, points of interest and population flow were defined and combined with the last step as interrelated horizontal layers for determining hotspots. A validation study compared the generated activity risk map, spatial COVID-19 cases, and land use distribution using logistic regression (LR) and Pearson coefficients (rxy). Through visual analytics, our findings indicate the central areas of both cities, including incompatible and concentrated commercial activities, have high-risk peaks (LR = 0.903, rxy = 0.78) despite the medium urban density of districts, indicating that urban density alone is insufficient for public health risk reduction. Health perspective-based spatial configuration of activities is advised as a risk assessment tool along with urban density for appropriate decision-making in shaping pandemic-resilient cities.

Keywords

References

  1. Sci Total Environ. 2020 Aug 10;729:138995 [PMID: 32353723]
  2. F1000Res. 2020 Nov 27;9:1379 [PMID: 35186280]
  3. Sustain Cities Soc. 2021 Mar;66:102672 [PMID: 33520608]
  4. J Environ Manage. 2023 Oct 15;344:118260 [PMID: 37354590]
  5. SN Comput Sci. 2022;3(4):269 [PMID: 35531569]
  6. Comput Urban Sci. 2023;3(1):7 [PMID: 36844146]
  7. Crit Care Resusc. 2020 Apr 01;22(2):91-94 [PMID: 32227819]
  8. J Healthy Eat Act Living. 2021 Dec 10;1(4):216-225 [PMID: 37771559]
  9. Sustain Cities Soc. 2021 May;68:102784 [PMID: 33643810]
  10. PLoS One. 2021 Oct 20;16(10):e0257373 [PMID: 34669723]
  11. Heliyon. 2023 Aug 04;9(8):e18769 [PMID: 37636432]
  12. Sustain Cities Soc. 2021 Jan;64:102568 [PMID: 33110743]
  13. Sustain Cities Soc. 2021 Jul;70:102942 [PMID: 33889481]
  14. Front Big Data. 2023 Apr 06;6:1099182 [PMID: 37091459]
  15. Sustain Cities Soc. 2021 Mar;66:102685 [PMID: 33520609]
  16. Sci Total Environ. 2021 Mar 20;761:144257 [PMID: 33352341]
  17. Front Public Health. 2021 Dec 15;9:756677 [PMID: 34976920]
  18. Sustain Cities Soc. 2021 Feb;65:102619 [PMID: 33251093]
  19. PLoS One. 2020 Jul 28;15(7):e0236238 [PMID: 32722716]
  20. Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17656-17666 [PMID: 32651281]
  21. Soc Sci Med. 2023 Jul;328:116003 [PMID: 37301108]
  22. Sci Total Environ. 2020 Oct 15;739:140033 [PMID: 32534320]
  23. Sustain Cities Soc. 2022 May;80:103719 [PMID: 35127340]
  24. Sci Rep. 2021 Apr 19;11(1):8396 [PMID: 33875751]
  25. Sustain Cities Soc. 2021 Jul;70:102916 [PMID: 35720981]
  26. PLoS One. 2021 Jul 20;16(7):e0253865 [PMID: 34283839]
  27. Sustain Cities Soc. 2022 Jan;76:103421 [PMID: 34646730]
  28. Land use policy. 2021 Oct;109:105725 [PMID: 34483431]
  29. Sustain Cities Soc. 2020 Oct;61:102350 [PMID: 32834930]
  30. Cities. 2022 Apr;123:103615 [PMID: 35095162]
  31. Sci Total Environ. 2023 May 1;871:161908 [PMID: 36736403]
  32. Sustain Cities Soc. 2021 Dec;75:103410 [PMID: 34631395]
  33. Sustain Cities Soc. 2021 Jul;70:102911 [PMID: 36567891]
  34. Sci Rep. 2022 Jan 13;12(1):699 [PMID: 35027627]
  35. Risk Anal. 2021 May;41(5):801-813 [PMID: 33733497]

Word Cloud

Created with Highcharts 10.0.0riskactivitiesCOVID-19activityspatialcommercialcitiespotentialbasedurbandensitytwodespiteresearchhotspotsdefinedplanninginfectionusingintereststudylandusecontagiousrecentlyemergedevolvedworld-threateningpandemicoutbreakpursuingrigorousprophylacticmeasuresyearsagogloballyreopenedemergencelethalgeneticstrainscontextassessingmappingcharacteristics-basedhotspotregionsfacilitatinginfectioustransmissionessentialHencequestionis:canintra-citiesparticular?ZayedOctoberEgyptcharacterizedvariousselectedtestbedsFirstanalyzedactivity'smorphologicalcharacteristicsCentreDiseaseControlPreventionCDCPcriteriaKrigingInterpolationmethodGoogleMobilitypreviousreportssemi-structuredinterviewspointspopulationflowcombinedlaststepinterrelatedhorizontallayersdeterminingvalidationcomparedgeneratedmapcasesdistributionlogisticregressionLRPearsoncoefficientsrxyvisualanalyticsfindingsindicatecentralareasincludingincompatibleconcentratedhigh-riskpeaksLR = 0903rxy = 078mediumdistrictsindicatingaloneinsufficientpublichealthreductionHealthperspective-basedconfigurationadvisedassessmenttoolalongappropriatedecision-makingshapingpandemic-resilientMappingCOVID-19'scharacteristics:caseEgyptianCommercialHotspotsHumanbehaviorInfectionPointsUrban

Similar Articles

Cited By

No available data.