Shipwreck ecology: Understanding the function and processes from microbes to megafauna.

Avery B Paxton, Christopher McGonigle, Melanie Damour, Georgia Holly, Alicia Caporaso, Peter B Campbell, Kirstin S Meyer-Kaiser, Leila J Hamdan, Calvin H Mires, J Christopher Taylor
Author Information
  1. Avery B Paxton: National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Beaufort, North Carolina, United States. ORCID
  2. Christopher McGonigle: School of Geography and Environmental Science, Ulster University, Coleraine, Northern  Ireland. ORCID
  3. Melanie Damour: Bureau of Ocean Energy Management, New Orleans, Louisiana, United States. ORCID
  4. Georgia Holly: Edinburgh Marine Archaeology, School of History, Classics, and Archaeology, University of Edinburgh, Edinburgh, Scotland, United Kingdom. ORCID
  5. Alicia Caporaso: Bureau of Ocean Energy Management, New Orleans, Louisiana, United States. ORCID
  6. Peter B Campbell: Cranfield Forensic Institute, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, England, United Kingdom. ORCID
  7. Kirstin S Meyer-Kaiser: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States. ORCID
  8. Leila J Hamdan: School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, Mississippi, United States.
  9. Calvin H Mires: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States. ORCID
  10. J Christopher Taylor: National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Beaufort, North Carolina, United States.

Abstract

An estimated three million shipwrecks exist worldwide and are recognized as cultural resources and foci of archaeological investigations. Shipwrecks also support ecological resources by providing underwater habitats that can be colonized by diverse organisms ranging from microbes to megafauna. In the present article, we review the emerging ecological subdiscipline of shipwreck ecology, which aims to understand ecological functions and processes that occur on shipwrecks. We synthesize how shipwrecks create habitat for biota across multiple trophic levels and then describe how fundamental ecological functions and processes, including succession, zonation, connectivity, energy flow, disturbance, and habitat degradation, manifest on shipwrecks. We highlight future directions in shipwreck ecology that are ripe for exploration, placing a particular emphasis on how shipwrecks may serve as experimental networks to address long-standing ecological questions.

Keywords

References

  1. Mar Environ Res. 2020 Apr;156:104916 [PMID: 32174336]
  2. Commun Biol. 2019 May 6;2:168 [PMID: 31069277]
  3. Sci Rep. 2019 Dec 5;9(1):18398 [PMID: 31804527]
  4. Science. 1973 Jun 29;180(4093):1377-9 [PMID: 17831103]
  5. PLoS One. 2015 Jul 01;10(7):e0130581 [PMID: 26132329]
  6. Sci Rep. 2018 Jun 28;8(1):9057 [PMID: 29955123]
  7. PLoS One. 2018 Sep 12;13(9):e0202939 [PMID: 30208117]
  8. Mar Environ Res. 2005 Mar;59(2):79-99 [PMID: 15364510]
  9. Mol Ecol. 2023 Dec;32(23):6686-6695 [PMID: 35567341]
  10. Ecology. 2019 Aug;100(8):e02687 [PMID: 31009086]
  11. Proc Natl Acad Sci U S A. 2017 May 2;114(18):E3652-E3658 [PMID: 28416684]
  12. Biofouling. 2016;32(1):57-69 [PMID: 26751559]
  13. PLoS One. 2020 Jul 15;15(7):e0234868 [PMID: 32667920]
  14. Mar Environ Res. 2013 Sep;90:55-65 [PMID: 23796542]
  15. ISME J. 2021 Oct;15(10):2883-2891 [PMID: 33888864]
  16. PLoS One. 2017 Sep 5;12(9):e0183906 [PMID: 28873447]
  17. Ecol Lett. 2015 Jul;18(7):696-705 [PMID: 25983129]
  18. Environ Pollut. 2020 Feb;257:113571 [PMID: 31733954]
  19. Biosci Biotechnol Biochem. 2015;80(1):7-12 [PMID: 26103134]
  20. Front Microbiol. 2016 May 24;7:767 [PMID: 27252686]
  21. ISME J. 2012 Mar;6(3):638-49 [PMID: 21881615]
  22. Mar Pollut Bull. 2021 Mar;164:112087 [PMID: 33548805]
  23. Mar Pollut Bull. 2020 Sep;158:111394 [PMID: 32753180]
  24. PLoS One. 2020 Sep 2;15(9):e0237374 [PMID: 32877404]
  25. Ann Rev Mar Sci. 2015;7:571-96 [PMID: 25251277]
  26. Front Microbiol. 2020 Aug 19;11:1897 [PMID: 32973699]
  27. PLoS One. 2008 Aug 20;3(8):e2989 [PMID: 18714355]
  28. Biofouling. 2019 Sep;35(8):870-882 [PMID: 31603038]
  29. ISME J. 2013 Apr;7(4):685-96 [PMID: 23190727]
  30. Trends Ecol Evol. 2022 Oct;37(10):815-818 [PMID: 35902291]
  31. Sci Rep. 2019 Jul 2;9(1):9573 [PMID: 31267013]
  32. Mar Pollut Bull. 2022 Jan;174:113250 [PMID: 34922226]
  33. Biofouling. 2005;21(2):127-40 [PMID: 16167392]
  34. Mar Pollut Bull. 2019 Nov;148:168-181 [PMID: 31425859]
  35. Mar Pollut Bull. 2016 Aug 15;109(1):110-116 [PMID: 27289288]
  36. Ecol Evol. 2020 Feb 08;10(4):2122-2130 [PMID: 32128143]
  37. Mar Pollut Bull. 2022 May;178:113622 [PMID: 35366553]

Word Cloud

Created with Highcharts 10.0.0shipwrecksecologicalculturalprocesseshabitatresourcesunderwatermicrobesmegafaunashipwreckecologyfunctionsexperimentalheritageestimatedthreemillionexistworldwiderecognizedfociarchaeologicalinvestigationsShipwrecksalsosupportprovidinghabitatscancolonizeddiverseorganismsrangingpresentarticlereviewemergingsubdisciplineaimsunderstandoccursynthesizecreatebiotaacrossmultipletrophiclevelsdescribefundamentalincludingsuccessionzonationconnectivityenergyflowdisturbancedegradationmanifesthighlightfuturedirectionsripeexplorationplacingparticularemphasismayservenetworksaddresslong-standingquestionsShipwreckecology:Understandingfunctionarchaeologyartificialnetworkmaritime

Similar Articles

Cited By