PM2.5 Causes Increased Bacterial Invasion by Affecting HBD1 Expression in the Lung.

Tianqi Zheng, Yajun Wang, Zheng Zhou, Shuyang Chen, Jinjun Jiang, Shujing Chen
Author Information
  1. Tianqi Zheng: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
  2. Yajun Wang: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. ORCID
  3. Zheng Zhou: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
  4. Shuyang Chen: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. ORCID
  5. Jinjun Jiang: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. ORCID
  6. Shujing Chen: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. ORCID

Abstract

Our research addresses the critical environmental issue of a fine particulate matter (PM2.5), focusing on its association with the increased infection risks. We explored the influence of PM2.5 on human beta-defensin 1 (HBD1), an essential peptide in mucosal immunity found in the airway epithelium. Using C57BL/6J mice and human bronchial epithelial cells (HBE), we examined the effects of PM2.5 exposure followed by infection on HBD1 expression at both mRNA and protein levels. The study revealed that PM2.5's toxicity to epithelial cells and animals varies with time and concentration. Notably, HBE cells exposed to PM2.5 and showed increased bacterial invasion and decreased HBD1 expression compared to the cells exposed to alone. Similarly, mice studies indicated that combined exposure to PM2.5 and significantly reduced survival rates and increased bacterial invasion. These harmful effects, however, were alleviated by administering exogenous HBD1. Furthermore, our findings highlight the activation of MAPK and NF-B pathways following PM2.5 exposure. Inhibiting these pathways effectively increased HBD1 expression and diminished bacterial invasion. In summary, our study establishes that PM2.5 exposure intensifies invasion in both HBE cells and mouse models, primarily by suppressing HBD1 expression. This effect can be counteracted with exogenous HBD1, with the downregulation mechanism involving the MAPK and NF-B pathways. Our study endeavors to elucidate the pathogenesis of lung infections associated with PM2.5 exposure, providing a novel theoretical basis for the development of prevention and treatment strategies, with substantial clinical significance.

References

  1. Environ Pollut. 2019 Mar;246:972-979 [PMID: 31126003]
  2. J Biol Chem. 2009 Oct 16;284(42):29180-92 [PMID: 19640840]
  3. Allergy. 2019 Apr;74(4):663-674 [PMID: 30362569]
  4. PLoS Med. 2019 Jun 3;16(6):e1002812 [PMID: 31158266]
  5. PLoS One. 2015 Sep 25;10(9):e0138762 [PMID: 26406307]
  6. Influenza Other Respir Viruses. 2021 Jul;15(4):513-520 [PMID: 33342077]
  7. J Biol Chem. 2001 Feb 23;276(8):5707-13 [PMID: 11085990]
  8. Mol Immunol. 2006 Apr;43(10):1617-23 [PMID: 16263169]
  9. Toxicol Lett. 2017 Mar 15;270:88-95 [PMID: 28189649]
  10. Autophagy. 2016 Oct 2;12(10):1832-1848 [PMID: 27463284]
  11. JAMA. 2006 Mar 8;295(10):1127-34 [PMID: 16522832]
  12. Science. 2010 May 28;328(5982):1168-72 [PMID: 20508130]
  13. Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3062-71 [PMID: 25934055]
  14. Environ Int. 2016 Feb;87:94-100 [PMID: 26655675]
  15. Respirology. 2015 Jul;20(5):722-9 [PMID: 25868842]
  16. Lancet. 2018 Jan 27;391(10118):339-349 [PMID: 29221643]
  17. Science. 2012 Jul 27;337(6093):477-81 [PMID: 22722251]
  18. Lancet Planet Health. 2018 Mar;2(3):e114-e125 [PMID: 29615226]
  19. Respir Res. 2017 Jul 25;18(1):143 [PMID: 28743263]
  20. Adv Sci (Weinh). 2022 Jan;9(3):e2102460 [PMID: 34816611]
  21. J Allergy Clin Immunol. 2020 Apr;145(4):1272-1284.e6 [PMID: 31983527]
  22. Small. 2020 Aug;16(33):e2000845 [PMID: 32686359]
  23. Sci Total Environ. 2020 Aug 15;730:139145 [PMID: 32402975]
  24. Inhal Toxicol. 2011 Apr;23(5):257-67 [PMID: 21506876]
  25. J Clin Invest. 1989 Aug;84(2):553-61 [PMID: 2668334]
  26. Environ Int. 2020 Nov;144:106011 [PMID: 32795749]
  27. Environ Res. 1992 Feb;57(1):19-33 [PMID: 1371246]
  28. Mucosal Immunol. 2017 Jan;10(1):250-259 [PMID: 27118490]
  29. Nature. 2011 Jan 20;469(7330):419-23 [PMID: 21248850]
  30. Toxicol Lett. 2018 Sep 15;294:145-155 [PMID: 29787794]
  31. Biochim Biophys Acta. 2016 Dec;1860(12):2826-34 [PMID: 27015762]
  32. PLoS One. 2014 Jun 12;9(6):e100084 [PMID: 24925270]
  33. Am J Respir Crit Care Med. 2018 Sep 15;198(6):759-766 [PMID: 29652174]
  34. Crit Rev Biotechnol. 2012 Jun;32(2):143-71 [PMID: 22074402]
  35. Cell Biol Toxicol. 2002;18(5):315-20 [PMID: 12240962]
  36. Infect Immun. 2015 Jun;83(6):2507-17 [PMID: 25847963]
  37. Ann Am Thorac Soc. 2015 Mar;12(3):385-91 [PMID: 25594356]
  38. Environ Pollut. 2016 Sep;216:208-214 [PMID: 27262134]
  39. Environ Pollut. 2022 Jan 1;292(Pt A):118320 [PMID: 34634399]
  40. Epidemiology. 2005 Mar;16(2):164-74 [PMID: 15703530]
  41. Cell Physiol Biochem. 2015;36(2):457-73 [PMID: 25968832]
  42. PLoS Pathog. 2012;8(4):e1002660 [PMID: 22563306]
  43. Toxicology. 2014 Nov 5;325:180-8 [PMID: 25220797]
  44. Science. 2003 Dec 5;302(5651):1716-9 [PMID: 14657488]
  45. Environ Res. 2021 Nov;202:111633 [PMID: 34256075]
  46. Am J Respir Crit Care Med. 2022 Nov 1;206(9):1070-1080 [PMID: 35649181]
  47. Sci Rep. 2018 Dec 21;8(1):18043 [PMID: 30575780]
  48. Environ Res. 2019 Dec;179(Pt A):108783 [PMID: 31590000]
  49. FEBS Lett. 2010 Apr 16;584(8):1543-8 [PMID: 20214904]
  50. Environ Int. 2020 Sep;142:105862 [PMID: 32599351]
  51. Ecotoxicol Environ Saf. 2023 May;256:114839 [PMID: 36989558]
  52. Front Cell Dev Biol. 2020 Oct 26;8:570484 [PMID: 33195201]
  53. JAMA Netw Open. 2019 Nov 1;2(11):e1915834 [PMID: 31747037]
  54. J Immunol. 2005 Apr 15;174(8):4870-9 [PMID: 15814714]
  55. Sci Total Environ. 2020 Jun 15;721:137432 [PMID: 32169651]
  56. Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8880-5 [PMID: 12840147]
  57. J Leukoc Biol. 2011 Aug;90(2):343-56 [PMID: 21551252]
  58. Am J Respir Cell Mol Biol. 1997 Mar;16(3):343-9 [PMID: 9070620]
  59. Lancet. 2017 May 13;389(10082):1907-1918 [PMID: 28408086]
  60. Environ Res. 2021 Jun;197:111123 [PMID: 33823194]
  61. Sci Total Environ. 2015 Dec 15;538:949-58 [PMID: 26363607]
  62. Toxicology. 2019 Feb 15;414:14-26 [PMID: 30611761]
  63. Environ Pollut. 2018 Dec;243(Pt A):336-345 [PMID: 30196203]

MeSH Term

Humans
Mice
Animals
NF-kappa B
beta-Defensins
Mice, Inbred C57BL
Lung
Particulate Matter

Chemicals

NF-kappa B
beta-Defensins
Particulate Matter

Word Cloud

Created with Highcharts 10.0.0PM25HBD1cellsexposureincreasedexpressioninvasionHBEstudybacterialpathwaysinfectionhumanmiceepithelialeffectsexposedexogenousMAPKNF-Bresearchaddressescriticalenvironmentalissuefineparticulatematterfocusingassociationrisksexploredinfluencebeta-defensin1essentialpeptidemucosalimmunityfoundairwayepitheliumUsingC57BL/6JbronchialexaminedfollowedmRNAproteinlevelsrevealed5'stoxicityanimalsvariestimeconcentrationNotablyshoweddecreasedcomparedaloneSimilarlystudiesindicatedcombinedsignificantlyreducedsurvivalratesharmfulhoweveralleviatedadministeringFurthermorefindingshighlightactivationfollowingInhibitingeffectivelydiminishedsummaryestablishesintensifiesmousemodelsprimarilysuppressingeffectcancounteracteddownregulationmechanisminvolvingendeavorselucidatepathogenesislunginfectionsassociatedprovidingnoveltheoreticalbasisdevelopmentpreventiontreatmentstrategiessubstantialclinicalsignificanceCausesIncreasedBacterialInvasionAffectingExpressionLung

Similar Articles

Cited By (1)