Structure-based prediction of protein-protein interaction network in rice.

Fangnan Sun, Yaxin Deng, Xiaosong Ma, Yuan Liu, Lingxia Zhao, Shunwu Yu, Lida Zhang
Author Information
  1. Fangnan Sun: Shanghai Jiao Tong University, School of Agriculture and Biology, Department of Plant Science, Shanghai, China.
  2. Yaxin Deng: Shanghai Jiao Tong University, School of Agriculture and Biology, Department of Plant Science, Shanghai, China.
  3. Xiaosong Ma: Shanghai Academy of Agricultural Sciences, Shanghai Agrobiological Gene Center, Shanghai, China.
  4. Yuan Liu: Shanghai Jiao Tong University, School of Agriculture and Biology, Department of Plant Science, Shanghai, China.
  5. Lingxia Zhao: Shanghai Jiao Tong University, School of Agriculture and Biology, Department of Plant Science, Shanghai, China.
  6. Shunwu Yu: Shanghai Academy of Agricultural Sciences, Shanghai Agrobiological Gene Center, Shanghai, China. ORCID
  7. Lida Zhang: Shanghai Jiao Tong University, School of Agriculture and Biology, Department of Plant Science, Shanghai, China. ORCID

Abstract

Comprehensive protein-protein interaction (PPI) maps are critical for understanding the functional organization of the proteome, but challenging to produce experimentally. Here, we developed a computational method for predicting PPIs based on protein docking. Evaluation of performance on benchmark sets demonstrated the ability of the docking-based method to accurately identify PPIs using predicted protein structures. By employing the docking-based method, we constructed a structurally resolved PPI network consisting of 24,653 interactions between 2,131 proteins, which greatly extends the current knowledge on the rice protein-protein interactome. Moreover, we mapped the trait-associated single nucleotide polymorphisms (SNPs) to the structural interactome, and computationally identified 14 SNPs that had significant consequences on PPI network. The protein structural interactome map provided a resource to facilitate functional investigation of PPI-perturbing alleles associated with agronomically important traits in rice.

References

  1. Nat Genet. 2021 Mar;53(3):342-353 [PMID: 33558758]
  2. Nature. 2020 Jul;583(7815):271-276 [PMID: 32612234]
  3. J Mol Biol. 2021 May 28;433(11):166704 [PMID: 33186584]
  4. Methods Mol Biol. 2021;2305:3-21 [PMID: 33950382]
  5. Nucleic Acids Res. 2019 Jul 2;47(W1):W338-W344 [PMID: 31114883]
  6. Bioinformatics. 2019 Nov 1;35(22):4821-4823 [PMID: 31141126]
  7. Nucleic Acids Res. 2015 Jan;43(Database issue):D234-9 [PMID: 25429972]
  8. Rice (N Y). 2012 Jul 02;5(1):15 [PMID: 24279740]
  9. Nat Commun. 2019 Jul 19;10(1):3205 [PMID: 31324802]
  10. PLoS Comput Biol. 2009 Aug;5(8):e1000490 [PMID: 19714207]
  11. PLoS One. 2011;6(9):e24657 [PMID: 21949741]
  12. Bioinformatics. 2010 Apr 1;26(7):889-95 [PMID: 20164152]
  13. Methods Mol Biol. 2021;2199:239-255 [PMID: 33125654]
  14. Plant Physiol. 2007 Oct;145(2):317-29 [PMID: 17675552]
  15. Science. 2014 May 16;344(6185):711-6 [PMID: 24833385]
  16. Nature. 2018 May;557(7703):43-49 [PMID: 29695866]
  17. Plant J. 2017 Apr;90(1):177-188 [PMID: 28074633]
  18. Nucleic Acids Res. 2020 Jan 8;48(D1):D927-D932 [PMID: 31566222]
  19. Nucleic Acids Res. 2014 Jan;42(Database issue):D358-63 [PMID: 24234451]
  20. Nat Genet. 2010 Nov;42(11):961-7 [PMID: 20972439]
  21. Nucleic Acids Res. 2008 Jan;36(Database issue):D999-1008 [PMID: 17962307]
  22. Mol Syst Biol. 2011 Feb 15;7:469 [PMID: 21326236]
  23. Nat Methods. 2013 Aug;10(8):690-1 [PMID: 23900247]
  24. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11836-11842 [PMID: 32398372]
  25. Proteins. 2020 Sep;88(9):1180-1188 [PMID: 32170770]
  26. Science. 2011 Jul 29;333(6042):601-7 [PMID: 21798944]
  27. Plant Physiol. 2019 Apr;179(4):1893-1907 [PMID: 30679268]
  28. Plant Cell. 2011 Mar;23(3):911-22 [PMID: 21441435]
  29. Plant Cell Physiol. 2022 Jun 15;63(6):869-881 [PMID: 35353884]
  30. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  31. Rice (N Y). 2013 Feb 06;6(1):4 [PMID: 24280374]
  32. Nucleic Acids Res. 2021 Jan 8;49(D1):D605-D612 [PMID: 33237311]
  33. Biophys J. 2014 Oct 21;107(8):1785-1793 [PMID: 25418159]
  34. Plant Cell Environ. 2019 Feb;42(2):387-409 [PMID: 30156707]
  35. BMC Bioinformatics. 2011 May 16;12:161 [PMID: 21575196]
  36. Plant Physiol. 2016 Feb;170(2):618-26 [PMID: 26620522]
  37. Plant Physiol. 2016 Jun;171(2):1511-22 [PMID: 27208273]
  38. Nucleic Acids Res. 2005 Apr 22;33(7):2302-9 [PMID: 15849316]
  39. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7 [PMID: 17517783]
  40. Adv Genet. 2019;104:75-154 [PMID: 31200809]
  41. Protein Sci. 2021 Jan;30(1):187-200 [PMID: 33070389]

Word Cloud

Created with Highcharts 10.0.0protein-proteinPPImethodproteinnetworkriceinteractomeinteractionfunctionalPPIsdocking-basedSNPsstructuralComprehensivemapscriticalunderstandingorganizationproteomechallengingproduceexperimentallydevelopedcomputationalpredictingbaseddockingEvaluationperformancebenchmarksetsdemonstratedabilityaccuratelyidentifyusingpredictedstructuresemployingconstructedstructurallyresolvedconsisting24653interactions2131proteinsgreatlyextendscurrentknowledgeMoreovermappedtrait-associatedsinglenucleotidepolymorphismscomputationallyidentified14significantconsequencesmapprovidedresourcefacilitateinvestigationPPI-perturbingallelesassociatedagronomicallyimportanttraitsStructure-basedprediction

Similar Articles

Cited By