Index analysis: An approach to understand signal transduction with application to the EGFR signalling pathway.

Jane Knöchel, Charlotte Kloft, Wilhelm Huisinga
Author Information
  1. Jane Knöchel: Institute of Mathematics, Universität Potsdam, Potsdam, Germany. ORCID
  2. Charlotte Kloft: Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
  3. Wilhelm Huisinga: Institute of Mathematics, Universität Potsdam, Potsdam, Germany. ORCID

Abstract

In systems biology and pharmacology, large-scale kinetic models are used to study the dynamic response of a system to a specific input or stimulus. While in many applications, a deeper understanding of the input-response behaviour is highly desirable, it is often hindered by the large number of molecular species and the complexity of the interactions. An approach that identifies key molecular species for a given input-response relationship and characterises dynamic properties of states is therefore highly desirable. We introduce the concept of index analysis; it is based on different time- and state-dependent quantities (indices) to identify important dynamic characteristics of molecular species. All indices are defined for a specific pair of input and response variables as well as for a specific magnitude of the input. In application to a large-scale kinetic model of the EGFR signalling cascade, we identified different phases of signal transduction, the peculiar role of Phosphatase3 during signal activation and Ras recycling during signal onset. In addition, we discuss the challenges and pitfalls of interpreting the relevance of molecular species based on knock-out simulation studies, and provide an alternative view on conflicting results on the importance of parallel EGFR downstream pathways. Beyond the applications in model interpretation, index analysis is envisioned to be a valuable tool in model reduction.

References

  1. Oncogene. 2005 Aug 25;24(36):5533-42 [PMID: 16007170]
  2. CPT Pharmacometrics Syst Pharmacol. 2023 Apr;12(4):432-443 [PMID: 36866520]
  3. Oncogene. 2007 May 14;26(22):3291-310 [PMID: 17496923]
  4. Mol Syst Biol. 2009;5:239 [PMID: 19156131]
  5. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18507-12 [PMID: 25512544]
  6. IET Syst Biol. 2011 Nov;5(6):336-6 [PMID: 22129029]
  7. J Theor Biol. 2003 May 7;222(1):23-36 [PMID: 12699732]
  8. J Biol Chem. 1999 Oct 15;274(42):30169-81 [PMID: 10514507]
  9. Nature. 2013 Jul 11;499(7457):166-71 [PMID: 23846654]
  10. PLoS One. 2016 Sep 02;11(9):e0162366 [PMID: 27588423]
  11. PLoS One. 2012;7(5):e36321 [PMID: 22606254]
  12. J Pharmacokinet Pharmacodyn. 2005 Dec;32(5-6):719-36 [PMID: 16341473]
  13. Eur J Pharm Sci. 2016 Oct 30;94:20-32 [PMID: 27112992]
  14. Nat Biotechnol. 2002 Apr;20(4):370-5 [PMID: 11923843]
  15. Chem Rev. 1998 Apr 2;98(2):391-408 [PMID: 11848905]
  16. FEBS Lett. 2003 Nov 20;554(3):467-72 [PMID: 14623113]
  17. Mol Syst Biol. 2023 Feb 10;19(2):e10988 [PMID: 36700386]
  18. FEBS J. 2005 Jan;272(1):244-58 [PMID: 15634347]
  19. Clin Pharmacol Ther. 2009 Sep;86(3):290-8 [PMID: 19516255]
  20. Nature. 2006 Jan 12;439(7073):168-74 [PMID: 16273093]
  21. IET Syst Biol. 2009 Jan;3(1):40-51 [PMID: 19154083]
  22. Nat Rev Mol Cell Biol. 2001 Feb;2(2):127-37 [PMID: 11252954]
  23. BMC Syst Biol. 2017 Feb 13;11(1):17 [PMID: 28193218]
  24. Cell Mol Life Sci. 2013 Jul;70(13):2259-69 [PMID: 23007845]
  25. Bioinformatics. 2005 Apr 1;21(7):1194-202 [PMID: 15531606]
  26. Sci Signal. 2009 Jun 30;2(77):ra31 [PMID: 19567914]
  27. BMC Syst Biol. 2011 Mar 15;5:41 [PMID: 21406095]
  28. J Pharmacokinet Pharmacodyn. 2018 Feb;45(1):139-157 [PMID: 29243176]

MeSH Term

Models, Biological
Signal Transduction
Computer Simulation
Systems Biology
ErbB Receptors

Chemicals

ErbB Receptors

Word Cloud

Created with Highcharts 10.0.0molecularspeciessignaldynamicspecificinputmodelEGFRlarge-scalekineticresponseapplicationsinput-responsehighlydesirableapproachindexanalysisbaseddifferentindicesapplicationsignallingtransductionsystemsbiologypharmacologymodelsusedstudysystemstimulusmanydeeperunderstandingbehaviouroftenhinderedlargenumbercomplexityinteractionsidentifieskeygivenrelationshipcharacterisespropertiesstatesthereforeintroduceconcepttime-state-dependentquantitiesidentifyimportantcharacteristicsdefinedpairvariableswellmagnitudecascadeidentifiedphasespeculiarrolePhosphatase3activationRasrecyclingonsetadditiondiscusschallengespitfallsinterpretingrelevanceknock-outsimulationstudiesprovidealternativeviewconflictingresultsimportanceparalleldownstreampathwaysBeyondinterpretationenvisionedvaluabletoolreductionIndexanalysis:understandpathway

Similar Articles

Cited By