Nucleus pulposus cells regulate macrophages in degenerated intervertebral discs via the integrated stress response-mediated CCL2/7-CCR2 signaling pathway.

Shuo Tian, Xuanzuo Chen, Wei Wu, Hui Lin, Xiangcheng Qing, Sheng Liu, BaiChuan Wang, Yan Xiao, Zengwu Shao, Yizhong Peng
Author Information
  1. Shuo Tian: Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
  2. Xuanzuo Chen: Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
  3. Wei Wu: Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
  4. Hui Lin: Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
  5. Xiangcheng Qing: Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
  6. Sheng Liu: Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
  7. BaiChuan Wang: Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
  8. Yan Xiao: Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
  9. Zengwu Shao: Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. szwpro@163.com.
  10. Yizhong Peng: Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. pyz5941z@163.com.

Abstract

Lower back pain (LBP), which is a primary cause of disability, is largely attributed to intervertebral disc degeneration (IDD). Macrophages (MΦs) in degenerated intervertebral discs (IVDs) form a chronic inflammatory microenvironment, but how MΦs are recruited to degenerative segments and transform into a proinflammatory phenotype remains unclear. We evaluated chemokine expression in degenerated nucleus pulposus cells (NPCs) to clarify the role of NPCs in the establishment of an inflammatory microenvironment in IDD and explored the mechanisms. We found that the production of C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 7 (CCL7) was significantly increased in NPCs under inflammatory conditions, and blocking CCL2/7 and their receptor, C-C chemokine receptor type 2(CCR2), inhibited the inductive effects of NPCs on MΦ infiltration and proinflammatory polarization. Moreover, activation of the integrated stress response (ISR) was obvious in IDD, and ISR inhibition reduced the production of CCL2/7 in NPCs. Further investigation revealed that activating Transcription Factor 3 (ATF3) responded to ISR activation, and ChIP-qPCR verified the DNA-binding activity of ATF3 on CCL2/7 promoters. In addition, we found that Toll-like receptor 4 (TLR4) inhibition modulated ISR activation, and TLR4 regulated the accumulation of mitochondrial reactive oxygen species (mtROS) and double-stranded RNA (dsRNA). Downregulating the level of mtROS reduced the amount of dsRNA and ISR activation. Deactivating the ISR or blocking CCL2/7 release alleviated inflammation and the progression of IDD in vivo. Moreover, MΦ infiltration and IDD were inhibited in CCR2-knockout mice. In conclusion, this study highlights the critical role of TLR4/mtROS/dsRNA axis-mediated ISR activation in the production of CCL2/7 and the progression of IDD, which provides promising therapeutic strategies for discogenic LBP.

References

  1. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020). [DOI: 10.1016/S0140-6736(20)30925-9]
  2. Sun, K. et al. The role of nerve fibers and their neurotransmitters in regulating intervertebral disc degeneration. Ageing Res. Rev. 81, 101733 (2022). [PMID: 36113765]
  3. Gallucci, M., Puglielli, E., Splendiani, A., Pistoia, F. & Spacca, G. Degenerative disorders of the spine. Eur. Radiol. 15, 591–598 (2005). [PMID: 15627174]
  4. Francisco, V. et al. A new immunometabolic perspective of intervertebral disc degeneration. Nat. Rev. Rheumatol. 18, 47–60 (2022). [PMID: 34845360]
  5. Risbud, M. V. & Shapiro, I. M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 10, 44–56 (2014). [PMID: 24166242]
  6. Phillips, K. L. et al. The cytokine and chemokine expression profile of nucleus pulposus cells: implications for degeneration and regeneration of the intervertebral disc. Arthritis Res. Ther. 15, R213 (2013). [PMID: 24325988]
  7. Sun, Z., Liu, B. & Luo, Z. J. The immune privilege of the intervertebral disc: implications for intervertebral disc degeneration treatment. Int. J. Med. Sci. 17, 685–692 (2020). [PMID: 32210719]
  8. Tu, J. et al. Single-cell transcriptome profiling reveals multicellular ecosystem of nucleus pulposus during degeneration progression. Adv. Sci. 9, e2103631 (2022). [DOI: 10.1002/advs.202103631]
  9. Ling, Z. et al. Single-cell RNA-seq analysis reveals macrophage involved in the progression of human intervertebral disc degeneration. Front. Cell Dev. Biol. 9, 833420 (2021). [PMID: 35295968]
  10. Nakazawa, K. R. et al. Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration. Spine J. 18, 343–356 (2018). [PMID: 29031872]
  11. Koroth, J. et al. Macrophages and Intervertebral Disc Degeneration. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24021367 (2023)
  12. Spriggs, K. A., Bushell, M. & Willis, A. E. Translational regulation of gene expression during conditions of cell stress. Mol. Cell 40, 228–237 (2010). [PMID: 20965418]
  13. Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, eaat5314 (2020). [PMID: 32327570]
  14. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016). [PMID: 27629041]
  15. Zhu, S., Henninger, K., McGrath, B. C. & Cavener, D. R. PERK regulates working memory and protein synthesis-dependent memory flexibility. PLoS ONE 11, e0162766 (2016). [PMID: 27627766]
  16. Spaulding, E. L. et al. The integrated stress response contributes to tRNA synthetase-associated peripheral neuropathy. Science 373, 1156–1161 (2021). [PMID: 34516839]
  17. Zhang, G., Wang, X., Rothermel, B. A., Lavandero, S. & Wang, Z. V. The integrated stress response in ischemic diseases. Cell Death Differ. 29, 750–757 (2022). [PMID: 34743204]
  18. Luo, R. et al. RETREG1-mediated ER-phagy activation induced by glucose deprivation alleviates nucleus pulposus cell damage via ER stress pathway. Acta Biochim. Biophys. Sin. 54, 524–536 (2022). [PMID: 35607959]
  19. Zhang, G. et al. Integrated stress response couples mitochondrial protein translation with oxidative stress control. Circulation 144, 1500–1515 (2021). [PMID: 34583519]
  20. Pfirrmann, C. W., Metzdorf, A., Zanetti, M., Hodler, J. & Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26, 1873–1878 (2001). [PMID: 11568697]
  21. Piprode, V. et al. An optimized step-by-step protocol for isolation of nucleus pulposus, annulus fibrosus, and end plate cells from the mouse intervertebral discs and subsequent preparation of high-quality intact total RNA. JOR Spine 3, e1108 (2020). [PMID: 33015579]
  22. Lin, H. et al. Reactive oxygen species regulate endoplasmic reticulum stress and ER-mitochondrial Ca(2+) crosstalk to promote programmed necrosis of rat nucleus pulposus cells under compression. Oxid. Med. Cell Longev. 2021, 8810698 (2021). [PMID: 33815661]
  23. Zhang, W. et al. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Exp. Mol. Med. 54, 129–142 (2022). [PMID: 35145201]
  24. Yu, Q. et al. Fucoidan-loaded nanofibrous scaffolds promote annulus fibrosus repair by ameliorating the inflammatory and oxidative microenvironments in degenerative intervertebral discs. Acta Biomater. 148, 73–89 (2022). [PMID: 35671874]
  25. Dong, Y. et al. Pilose antler peptide attenuates LPS-induced inflammatory reaction. Int. J. Biol. Macromol. 108, 272–276 (2018). [PMID: 29208559]
  26. Schmid, B., Hausmann, O., Hitzl, W., Achermann, Y. & Wuertz-Kozak, K. The role of cutibacterium acnes in intervertebral disc inflammation. Biomedicines https://doi.org/10.3390/biomedicines8070186 (2020)
  27. Zheng, R. et al. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 47, D729–D735 (2019). [PMID: 30462313]
  28. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015). [PMID: 26925227]
  29. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). [PMID: 25516281]
  30. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017). [PMID: 29141660]
  31. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). [PMID: 29608179]
  32. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019). [PMID: 30643263]
  33. Ianevski, A., Giri, A. K. & Aittokallio, T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat. Commun. 13, 1246 (2022). [PMID: 35273156]
  34. Zhang, X. et al. CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 47, D721–D728 (2019). [PMID: 30289549]
  35. Garrido-Martin, E. M. et al. M1(hot) tumor-associated macrophages boost tissue-resident memory T cells infiltration and survival in human lung cancer. J. Immunother. Cancer https://doi.org/10.1136/jitc-2020-000778 (2020)
  36. Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224 (2019). [PMID: 31114921]
  37. Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020). [PMID: 31701148]
  38. Peng, Y. et al. Decellularized disc hydrogels for hBMSCs tissue-specific differentiation and tissue regeneration. Bioact. Mater. 6, 3541–3556 (2021). [PMID: 33842740]
  39. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004). [PMID: 15530839]
  40. Teng, Y. et al. Nimbolide targeting SIRT1 mitigates intervertebral disc degeneration by reprogramming cholesterol metabolism and inhibiting inflammatory signaling. Acta Pharm. Sin B 13, 2269–2280 (2023). [PMID: 37250166]
  41. Park, H. J. et al. A novel TLR4 binding protein, 40S ribosomal protein S3, has potential utility as an adjuvant in a dendritic cell-based vaccine. J. Immunother. Cancer 7, 60 (2019). [PMID: 30819254]
  42. Perego, J. et al. Guanabenz prevents d-galactosamine/lipopolysaccharide-induced liver damage and mortality. Front. Immunol. 8, 679 (2017). [PMID: 28659918]
  43. Nunnari, J. & Suomalainen, A. Mitochondria: in sickness and in health. Cell 148, 1145–1159 (2012). [PMID: 22424226]
  44. West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011). [PMID: 21525932]
  45. Kim, Y. et al. PKR senses nuclear and mitochondrial signals by interacting with endogenous double-stranded RNAs. Mol. Cell 71, 1051–1063.e1056 (2018). [PMID: 30174290]
  46. Kim, S. et al. Mitochondrial double-stranded RNAs govern the stress response in chondrocytes to promote osteoarthritis development. Cell Rep. 40, 111178 (2022). [PMID: 35947956]
  47. Bonekamp, N. A. et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 588, 712–716 (2020). [PMID: 33328633]
  48. Han, B. et al. A simple disc degeneration model induced by percutaneous needle puncture in the rat tail. Spine 33, 1925–1934 (2008). [PMID: 18708924]
  49. Kawakubo, A. et al. Investigation of resident and recruited macrophages following disc injury in mice. J. Orthop. Res. 38, 1703–1709 (2020). [PMID: 31965590]
  50. Kawakubo, A. et al. Origin of M2 Mϕ and its macrophage polarization by TGF-β in a mice intervertebral injury model. Int. J. Immunopathol. Pharmacol. 36, 3946320221103792 (2022). [PMID: 35592891]
  51. Nakawaki, M. et al. Sequential CCL2 expression profile after disc injury in mice. J. Orthop. Res. 38, 895–901 (2020). [PMID: 31721276]
  52. Nakawaki, M. et al. Changes in nerve growth factor expression and macrophage phenotype following intervertebral disc injury in mice. J. Orthop. Res. 37, 1798–1804 (2019). [PMID: 30977543]
  53. Ruytinx, P., Proost, P., Van Damme, J. & Struyf, S. Chemokine-induced macrophage polarization in inflammatory conditions. Front. Immunol. 9, 1930 (2018). [PMID: 30245686]
  54. Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762–774 (2011). [PMID: 21984070]
  55. Yang, R. Z. et al. Involvement of oxidative stress-induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis. J. Cell Physiol. 236, 2725–2739 (2021). [PMID: 32892384]
  56. Xiang, Q. et al. CircRNA-CIDN mitigated compression loading-induced damage in human nucleus pulposus cells via miR-34a-5p/SIRT1 axis. EBioMedicine 53, 102679 (2020). [PMID: 32114390]
  57. Bao, J. et al. Pharmacological Disruption of Phosphorylated Eukaryotic Initiation Factor-2α/Activating Transcription Factor 4/Indian Hedgehog Protects Intervertebral Disc Degeneration via Reducing the Reactive Oxygen Species and Apoptosis of Nucleus Pulposus Cells. Front. Cell Dev. Biol. 9, 675486 (2021). [PMID: 34164397]
  58. Guan, B.-J. et al. A unique ISR program determines cellular responses to chronic stress. Mol. Cell 68, 885–900.e886 (2017). [PMID: 29220654]
  59. Onat, U. I. et al. Intercepting the lipid-induced integrated stress response reduces atherosclerosis. J. Am. Coll. Cardiol. 73, 1149–1169 (2019). [PMID: 30871699]
  60. Zhu, Q. C. et al. Induction of the proinflammatory chemokine interleukin-8 is regulated by integrated stress response and AP-1 family proteins activated during coronavirus infection. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22115646 (2021).
  61. Hai, T., Wolfgang, C. D., Marsee, D. K., Allen, A. E. & Sivaprasad, U. ATF3 and stress responses. Gene Expr. 7, 321–335 (1999). [PMID: 10440233]
  62. Di Marcantonio, D. et al. ATF3 coordinates serine and nucleotide metabolism to drive cell cycle progression in acute myeloid leukemia. Mol. Cell 81, 2752–2764.e2756 (2021). [PMID: 34081901]
  63. Tian, F. et al. Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron 110, 2607–2624.e2608 (2022). [PMID: 35767995]
  64. Hull, C. M. & Bevilacqua, P. C. Discriminating self and non-self by RNA: roles for RNA structure, misfolding, and modification in regulating the innate immune sensor PKR. Acc Chem Res 49, 1242–1249 (2016). [PMID: 27269119]
  65. Gómez, R., Villalvilla, A., Largo, R., Gualillo, O. & Herrero-Beaumont, G. TLR4 signalling in osteoarthritis–finding targets for candidate DMOADs. Nat. Rev. Rheumatol. 11, 159–170 (2015). [PMID: 25512010]
  66. Rajan, N. E. et al. Toll-Like Receptor 4 (TLR4) expression and stimulation in a model of intervertebral disc inflammation and degeneration. Spine 38, 1343–1351 (2013). [PMID: 22850250]
  67. Inigo, J. R. & Chandra, D. The mitochondrial unfolded protein response (UPR(mt)): shielding against toxicity to mitochondria in cancer. J. Hematol. Oncol. 15, 98 (2022). [PMID: 35864539]

MeSH Term

Animals
Mice
Activating Transcription Factor 3
Chemokines
Cyclic AMP Response Element-Binding Protein
Inflammation
Intervertebral Disc Degeneration
Ligands
Low Back Pain
Macrophages
Nucleus Pulposus
Receptors, Chemokine
Signal Transduction
Toll-Like Receptor 4
Humans

Chemicals

Activating Transcription Factor 3
Ccr2 protein, mouse
Chemokines
Cyclic AMP Response Element-Binding Protein
Ligands
Receptors, Chemokine
Toll-Like Receptor 4
CCR2 protein, human
CCL2 protein, human
CCL7 protein, human

Word Cloud

Created with Highcharts 10.0.0ISRIDDNPCsCCL2/7activationchemokineintervertebraldegeneratedinflammatoryproductionC-CreceptorLBPMΦsdiscsmicroenvironmentproinflammatorypulposuscellsrolefoundmotifligand2blockinginhibitedinfiltrationMoreoverintegratedstressinhibitionreducedATF3TLR4mtROSdsRNAprogressionLowerbackpainprimarycausedisabilitylargelyattributeddiscdegenerationMacrophagesIVDsformchronicrecruiteddegenerativesegmentstransformphenotyperemainsunclearevaluatedexpressionnucleusclarifyestablishmentexploredmechanismsCCL27CCL7significantlyincreasedconditionstypeCCR2inductiveeffectspolarizationresponseobviousinvestigationrevealedactivatingTranscriptionFactor3respondedChIP-qPCRverifiedDNA-bindingactivitypromotersadditionToll-like4modulatedregulatedaccumulationmitochondrialreactiveoxygenspeciesdouble-strandedRNADownregulatinglevelamountDeactivatingreleasealleviatedinflammationvivoCCR2-knockoutmiceconclusionstudyhighlightscriticalTLR4/mtROS/dsRNAaxis-mediatedprovidespromisingtherapeuticstrategiesdiscogenicNucleusregulatemacrophagesviaresponse-mediatedCCL2/7-CCR2signalingpathway

Similar Articles

Cited By