Geometry and length control of 3D engineered heart tissues using direct laser writing.

M Çağatay Karakan, Jourdan K Ewoldt, Addianette J Segarra, Subramanian Sundaram, Miranda C Wang, Alice E White, Christopher S Chen, Kamil L Ekinci
Author Information
  1. M Çağatay Karakan: Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA. karakan@bu.edu. ORCID
  2. Jourdan K Ewoldt: Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA. ORCID
  3. Addianette J Segarra: Photonics Center, Boston University, Boston, MA 02215, USA.
  4. Subramanian Sundaram: Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA. ORCID
  5. Miranda C Wang: Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA. ORCID
  6. Alice E White: Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA. karakan@bu.edu. ORCID
  7. Christopher S Chen: Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
  8. Kamil L Ekinci: Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA. karakan@bu.edu. ORCID

Abstract

Geometry and mechanical characteristics of the environment surrounding the Engineered Heart Tissues (EHT) affect their structure and function. Here, we employed a 3D tissue culture platform fabricated using two-photon direct laser writing with a high degree of accuracy to control parameters that are relevant to EHT maturation. Using this platform, we first explore the effects of geometry based on two distinct shapes: a rectangular seeding well with two attachment sites, and a stadium-like seeding well with six attachment sites that are placed symmetrically along hemicylindrical membranes. The former geometry promotes uniaxial contraction of the tissues; the latter additionally induces diagonal fiber alignment. We systematically increase the length of the seeding wells for both configurations and observe a positive correlation between fiber alignment at the center of the EHTs and tissue length. With increasing length, an undesirable thinning and "necking" also emerge, leading to the failure of longer tissues over time. In the second step, we optimize the stiffness of the seeding wells and modify some of the attachment sites of the platform and the seeding parameters to achieve tissue stability for each length and geometry. Furthermore, we use the platform for electrical pacing and calcium imaging to evaluate the functional dynamics of EHTs as a function of frequency.

References

  1. Stem Cell Res. 2021 May;53:102279 [PMID: 33743363]
  2. J Imaging. 2022 Apr 01;8(4): [PMID: 35448222]
  3. Stem Cells. 2018 Feb;36(2):265-277 [PMID: 29086457]
  4. ACS Biomater Sci Eng. 2021 Nov 8;7(11):5215-5229 [PMID: 34668692]
  5. FASEB J. 1997 Jul;11(8):683-94 [PMID: 9240969]
  6. Adv Healthc Mater. 2020 Apr;9(8):e1901373 [PMID: 32090507]
  7. Nat Methods. 2013 Aug;10(8):781-7 [PMID: 23793239]
  8. Integr Biol (Camb). 2020 Mar 6;12(2):34-46 [PMID: 32118279]
  9. Biomaterials. 2015 Aug;60:82-91 [PMID: 25985155]
  10. Circ Res. 2018 Feb 2;122(3):e5-e16 [PMID: 29282212]
  11. Biofabrication. 2014 Jun;6(2):024109-24109 [PMID: 24717534]
  12. Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18129-34 [PMID: 15604141]
  13. Acta Biomater. 2017 Jun;55:120-130 [PMID: 28455218]
  14. Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20923-8 [PMID: 24324149]
  15. Tissue Eng Part A. 2012 May;18(9-10):910-9 [PMID: 22092279]
  16. Sci Rep. 2017 Apr 03;7:45641 [PMID: 28368043]
  17. Lab Chip. 2021 May 4;21(9):1724-1737 [PMID: 33949395]
  18. Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12705-10 [PMID: 26417073]
  19. Sci Rep. 2020 Apr 24;10(1):6919 [PMID: 32332814]
  20. Biophys J. 2006 Sep 1;91(5):1800-10 [PMID: 16782784]
  21. ACS Cent Sci. 2019 Jul 24;5(7):1146-1158 [PMID: 31403068]
  22. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):E4698-707 [PMID: 24255110]
  23. Sci Adv. 2022 Apr 22;8(16):eabm3791 [PMID: 35452278]
  24. Circ Res. 2005 Dec 9;97(12):1220-31 [PMID: 16339494]
  25. Circulation. 2021 May 18;143(20):1991-2006 [PMID: 33648345]
  26. Adv Mater. 2022 Jul;34(26):e2200217 [PMID: 35451188]
  27. Biochim Biophys Acta. 2016 Jul;1863(7 Pt B):1857-63 [PMID: 26577135]
  28. Nat Biomed Eng. 2022 Apr;6(4):372-388 [PMID: 35478228]
  29. Nature. 2018 Apr;556(7700):239-243 [PMID: 29618819]
  30. Circ Res. 2009 Feb 27;104(4):e30-41 [PMID: 19213953]
  31. Biomaterials. 2020 Jan;227:119551 [PMID: 31670034]
  32. Biomaterials. 2016 Dec;111:66-79 [PMID: 27723557]
  33. FASEB J. 2014 Feb;28(2):644-54 [PMID: 24174427]
  34. Circ Res. 2017 Apr 28;120(9):1487-1500 [PMID: 28450366]
  35. Circ Res. 2002 Feb 8;90(2):223-30 [PMID: 11834716]
  36. Curr Protoc Hum Genet. 2018 Jan 24;96:21.11.1-21.11.20 [PMID: 29364519]
  37. Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10097-102 [PMID: 19541627]
  38. ACS Biomater Sci Eng. 2019 Aug 12;5(8):3843-3855 [PMID: 33438424]
  39. Stem Cell Reports. 2016 Jul 12;7(1):29-42 [PMID: 27211213]
  40. Stem Cell Reports. 2020 Feb 11;14(2):312-324 [PMID: 31956082]

Grants

  1. F31 HL158195/NHLBI NIH HHS
  2. S10 OD024993/NIH HHS

MeSH Term

Myocytes, Cardiac
Tissue Engineering
Lasers
Myocardial Contraction

Word Cloud

Created with Highcharts 10.0.0seedinglengthplatformtissuegeometryattachmentsitestissuesGeometryEHTfunction3DusingdirectlaserwritingcontrolparameterstwowellfiberalignmentwellsEHTsmechanicalcharacteristicsenvironmentsurroundingEngineeredHeartTissuesaffectstructureemployedculturefabricatedtwo-photonhighdegreeaccuracyrelevantmaturationUsingfirstexploreeffectsbaseddistinctshapes:rectangularstadium-likesixplacedsymmetricallyalonghemicylindricalmembranesformerpromotesuniaxialcontractionlatteradditionallyinducesdiagonalsystematicallyincreaseconfigurationsobservepositivecorrelationcenterincreasingundesirablethinning"necking"alsoemergeleadingfailurelongertimesecondstepoptimizestiffnessmodifyachievestabilityFurthermoreuseelectricalpacingcalciumimagingevaluatefunctionaldynamicsfrequencyengineeredheart

Similar Articles

Cited By