Context-dependent redesign of robust synthetic gene circuits.

Austin Stone, Abdelrahaman Youssef, Sadikshya Rijal, Rong Zhang, Xiao-Jun Tian
Author Information
  1. Austin Stone: School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA.
  2. Abdelrahaman Youssef: School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA.
  3. Sadikshya Rijal: School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA.
  4. Rong Zhang: School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA.
  5. Xiao-Jun Tian: School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA. Electronic address: xiaojun.tian@asu.edu.

Abstract

Cells provide dynamic platforms for executing exogenous genetic programs in synthetic biology, resulting in highly context-dependent circuit performance. Recent years have seen an increasing interest in understanding the intricacies of circuit-host relationships, their influence on the synthetic bioengineering workflow, and in devising strategies to alleviate undesired effects. We provide an overview of how emerging circuit-host interactions, such as growth feedback and resource competition, impact both deterministic and stochastic circuit behaviors. We also emphasize control strategies for mitigating these unwanted effects. This review summarizes the latest advances and the current state of host-aware and resource-aware design of synthetic gene circuits.

Keywords

References

  1. Curr Opin Microbiol. 2016 Oct;33:123-130 [PMID: 27494248]
  2. PLoS Comput Biol. 2022 Sep 16;18(9):e1010518 [PMID: 36112667]
  3. ACS Synth Biol. 2021 May 21;10(5):1227-1236 [PMID: 33915046]
  4. ACS Synth Biol. 2013 Aug 16;2(8):431-41 [PMID: 23654274]
  5. Nat Biotechnol. 2012 Oct;30(10):1002-6 [PMID: 22983090]
  6. Nat Methods. 2015 May;12(5):415-8 [PMID: 25849635]
  7. Nat Commun. 2023 Jun 16;14(1):3576 [PMID: 37328476]
  8. ACS Synth Biol. 2017 Aug 18;6(8):1596-1604 [PMID: 28459541]
  9. Nucleic Acids Res. 2012 Apr;40(7):2907-24 [PMID: 22156164]
  10. Cell Syst. 2016 Jan 27;2(1):15-26 [PMID: 27136686]
  11. Nat Commun. 2015 Jul 17;6:7832 [PMID: 26184393]
  12. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):14024-9 [PMID: 23924614]
  13. Curr Opin Biotechnol. 2020 Jun;63:41-47 [PMID: 31877425]
  14. ACS Synth Biol. 2018 Nov 16;7(11):2485-2496 [PMID: 30346148]
  15. Curr Opin Biotechnol. 2022 Dec;78:102837 [PMID: 36343564]
  16. ACS Synth Biol. 2019 Jun 21;8(6):1231-1240 [PMID: 31181895]
  17. Nat Commun. 2023 Mar 17;14(1):1500 [PMID: 36932109]
  18. Nat Commun. 2018 Feb 15;9(1):695 [PMID: 29449554]
  19. Nucleic Acids Res. 2016 Jan 8;44(1):496-507 [PMID: 26656950]
  20. mSystems. 2019 Apr 9;4(2): [PMID: 30984871]
  21. Nat Commun. 2021 Feb 8;12(1):853 [PMID: 33558556]
  22. Biophys J. 2015 Aug 4;109(3):639-46 [PMID: 26244745]
  23. ACS Synth Biol. 2017 Jul 21;6(7):1263-1272 [PMID: 28350160]
  24. Nat Commun. 2020 Oct 14;11(1):5174 [PMID: 33057059]
  25. Nat Methods. 2018 May;15(5):387-393 [PMID: 29578536]
  26. Life (Basel). 2021 Mar 24;11(4): [PMID: 33805212]
  27. Nat Biotechnol. 2012 Nov;30(11):1137-42 [PMID: 23034349]
  28. Biophys J. 2018 Feb 6;114(3):737-746 [PMID: 29414718]
  29. Nat Commun. 2020 Nov 10;11(1):5690 [PMID: 33173034]
  30. Nat Commun. 2021 Mar 16;12(1):1692 [PMID: 33727557]
  31. Nat Commun. 2024 Mar 4;15(1):1981 [PMID: 38438391]
  32. Nat Commun. 2020 Sep 15;11(1):4641 [PMID: 32934213]
  33. Trends Biochem Sci. 2020 Aug;45(8):681-692 [PMID: 32448596]
  34. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):E1038-47 [PMID: 25695966]
  35. Trends Biotechnol. 2023 Jul;41(7):860-874 [PMID: 36669947]
  36. Trends Biotechnol. 2023 Jun;41(6):760-768 [PMID: 36435671]
  37. ACS Synth Biol. 2018 Jan 19;7(1):54-62 [PMID: 29193958]
  38. Cell. 2009 Dec 24;139(7):1366-75 [PMID: 20064380]
  39. Nat Biotechnol. 2014 Dec;32(12):1268-75 [PMID: 25419739]
  40. Nat Commun. 2022 Nov 17;13(1):7054 [PMID: 36396941]
  41. Nat Commun. 2017 Apr 26;8:15128 [PMID: 28443619]
  42. Nat Commun. 2018 Dec 21;9(1):5415 [PMID: 30575748]
  43. Nat Microbiol. 2017 Dec;2(12):1658-1666 [PMID: 28947816]
  44. Mol Syst Biol. 2014 Jul 30;10:742 [PMID: 25080493]
  45. Nucleic Acids Res. 2011 Feb;39(3):1131-41 [PMID: 20843779]
  46. Proc Natl Acad Sci U S A. 2022 Jun 14;119(24):e2122132119 [PMID: 35687671]
  47. Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2526-2531 [PMID: 29463749]
  48. Nat Biotechnol. 2012 Nov;30(11):1061-2 [PMID: 23138300]
  49. Nucleic Acids Res. 2024 Feb 9;52(3):1512-1521 [PMID: 38164993]
  50. Nat Commun. 2018 Oct 30;9(1):4528 [PMID: 30375377]
  51. ACS Synth Biol. 2022 Jul 15;11(7):2361-2371 [PMID: 35772024]
  52. Front Bioeng Biotechnol. 2020 Aug 07;8:942 [PMID: 32850764]
  53. Nat Plants. 2019 Dec;5(12):1207-1210 [PMID: 31740769]
  54. Curr Opin Microbiol. 2020 Jun;55:48-56 [PMID: 32220744]
  55. ACS Synth Biol. 2017 Mar 17;6(3):455-462 [PMID: 27935286]
  56. Trends Biotechnol. 2015 Feb;33(2):111-9 [PMID: 25544476]
  57. Nat Commun. 2022 Mar 31;13(1):1720 [PMID: 35361767]
  58. Cell Rep. 2022 Oct 18;41(3):111492 [PMID: 36261020]
  59. Nat Chem Biol. 2020 Jun;16(6):695-701 [PMID: 32251409]
  60. Nat Commun. 2020 Jun 19;11(1):3138 [PMID: 32561745]
  61. Nat Chem Biol. 2009 Nov;5(11):842-8 [PMID: 19801994]
  62. Cell Syst. 2021 Jun 16;12(6):561-592 [PMID: 34139166]
  63. Front Microbiol. 2013 Jan 25;4:5 [PMID: 23355834]
  64. Chaos Solitons Fractals. 2023 Aug;173: [PMID: 37485435]
  65. Adv Genet (Hoboken). 2022 Mar;3(1): [PMID: 35989723]
  66. Curr Opin Chem Eng. 2020 Dec;30:96-102 [PMID: 32968619]
  67. Nat Commun. 2020 Apr 20;11(1):1858 [PMID: 32313034]
  68. ACS Synth Biol. 2022 Dec 16;11(12):3986-3995 [PMID: 36355441]
  69. Mol Syst Biol. 2008;4:161 [PMID: 18277378]
  70. Cell Syst. 2020 Oct 21;11(4):382-392.e9 [PMID: 32937113]
  71. Phys Biol. 2009 Jun 30;6(3):036015 [PMID: 19567940]
  72. Nature. 2019 Jun;570(7762):533-537 [PMID: 31217585]
  73. Nat Chem Biol. 2023 Sep;19(9):1097-1104 [PMID: 36959461]
  74. Nucleic Acids Res. 2012 Sep 1;40(17):8773-81 [PMID: 22743271]
  75. Nat Commun. 2022 Sep 2;13(1):5159 [PMID: 36056029]
  76. Curr Opin Biotechnol. 2023 Feb;79:102880 [PMID: 36621221]
  77. Biotechnol J. 2012 Jul;7(7):856-66 [PMID: 22649052]
  78. PLoS Comput Biol. 2014 Oct 09;10(10):e1003845 [PMID: 25299042]
  79. ACS Synth Biol. 2017 Feb 17;6(2):334-343 [PMID: 27690390]
  80. Mol Syst Biol. 2011 Dec 20;7:561 [PMID: 22186735]
  81. Science. 2010 Nov 19;330(6007):1099-102 [PMID: 21097934]
  82. Cell Syst. 2017 Jul 26;5(1):11-24.e12 [PMID: 28734826]
  83. Nat Chem Biol. 2005 Aug;1(3):159-66 [PMID: 16408021]
  84. Sci Rep. 2020 May 20;10(1):8383 [PMID: 32433471]
  85. Curr Opin Biotechnol. 2014 Aug;28:96-102 [PMID: 24495512]
  86. Nature. 2015 Aug 6;524(7563):119-24 [PMID: 26222032]
  87. Cell Rep. 2013 Jul 25;4(2):231-7 [PMID: 23871664]

Grants

  1. R35 GM142896/NIGMS NIH HHS

MeSH Term

Synthetic Biology
Gene Regulatory Networks
Genes, Synthetic
Genetic Engineering

Word Cloud

Created with Highcharts 10.0.0syntheticcircuitprovidecircuit-hoststrategieseffectsinteractionsfeedbackdesigngenecircuitsCellsdynamicplatformsexecutingexogenousgeneticprogramsbiologyresultinghighlycontext-dependentperformanceRecentyearsseenincreasinginterestunderstandingintricaciesrelationshipsinfluencebioengineeringworkflowdevisingalleviateundesiredoverviewemerginggrowthresourcecompetitionimpactdeterministicstochasticbehaviorsalsoemphasizecontrolmitigatingunwantedreviewsummarizeslatestadvancescurrentstatehost-awareresource-awareContext-dependentredesignrobustcircuit���hostcontrol-embeddedcontextfactorsmetabolicburden

Similar Articles

Cited By