Production of safe cyanobacterial biomass for animal feed using wastewater and drinking water treatment residuals.

Seonghwan Park, Sang-Jun Lee, Won Noh, Yeong Jin Kim, Je-Hein Kim, Seng-Min Back, Byung-Gon Ryu, Seung Won Nam, Seong-Hoon Park, Jungmin Kim
Author Information
  1. Seonghwan Park: Biomass Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
  2. Sang-Jun Lee: Biomass Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
  3. Won Noh: Biomass Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
  4. Yeong Jin Kim: Environmental Safety-Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
  5. Je-Hein Kim: Human Risk Assessment Center, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.
  6. Seng-Min Back: Genetic & Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
  7. Byung-Gon Ryu: Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea.
  8. Seung Won Nam: Bioresources Collection & Bioinformation Department, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea.
  9. Seong-Hoon Park: Genetic & Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
  10. Jungmin Kim: Biomass Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.

Abstract

The growing interest in microalgae and cyanobacteria biomass as an alternative to traditional animal feed is hindered by high production costs. Using wastewater (WW) as a cultivation medium could offer a solution, but this approach risks introducing harmful substances into the biomass, leading to significant safety concerns. In this study, we addressed these challenges by selectively extracting nitrates and phosphates from WW using drinking water treatment residuals (DWTR) and chitosan. This method achieved peak adsorption capacities of 4.4 mg/g for nitrate and 6.1 mg/g for phosphate with a 2.5 wt% chitosan blend combined with DWTR-nitrogen. Subsequently, these extracted nutrients were employed to cultivate , yielding a biomass productivity rate of 0.15 g/L/d, which is comparable to rates achieved with commercial nutrients. By substituting commercial nutrients with nitrate and phosphate from WW, we can achieve a 18 % reduction in the culture medium cost. While the cultivated biomass was initially nitrogen-deficient due to low nitrate levels, it proved to be protein-rich, accounting for 50 % of its dry weight, and contained a high concentration of free amino acids (1260 mg/g), encompassing all essential amino acids. Both in vitro and in vivo toxicity tests affirmed the biomass's safety for use as an animal feed component. Future research should aim to enhance the economic feasibility of this alternative feed source by developing efficient adsorbents, utilizing cost-effective reagents, and implementing nutrient reuse strategies in spent mediums.

Keywords

References

  1. Heliyon. 2020 Nov 03;6(11):e05415 [PMID: 33195845]
  2. Heliyon. 2019 Aug 26;5(8):e02342 [PMID: 31485529]
  3. Fish Shellfish Immunol. 2016 Sep;56:111-122 [PMID: 27394967]
  4. Environ Sci Pollut Res Int. 2018 Jul;25(19):18484-18497 [PMID: 29696546]
  5. Bioresour Technol. 2021 Dec;341:125723 [PMID: 34411939]
  6. J Anim Sci Biotechnol. 2021 Jun 17;12(1):76 [PMID: 34134776]
  7. J Environ Manage. 2022 Apr 1;307:114512 [PMID: 35066198]
  8. Evid Based Complement Alternat Med. 2016;2016:7631864 [PMID: 26933442]
  9. J Nutr Sci Vitaminol (Tokyo). 1994 Oct;40(5):431-41 [PMID: 7891204]
  10. Heliyon. 2023 Mar 22;9(4):e14708 [PMID: 37151658]
  11. Front Vet Sci. 2020 Feb 26;7:53 [PMID: 32175333]
  12. Front Plant Sci. 2020 Dec 17;11:589026 [PMID: 33408729]
  13. Foods. 2021 Dec 04;10(12): [PMID: 34945551]
  14. Foods. 2021 Nov 28;10(12): [PMID: 34945484]
  15. Heliyon. 2019 Sep 14;5(9):e02470 [PMID: 31687566]
  16. J Environ Manage. 2019 Mar 15;234:181-188 [PMID: 30622016]
  17. Carbohydr Polym. 2021 Nov 15;274:118671 [PMID: 34702487]
  18. Heliyon. 2023 Jun 03;9(6):e16974 [PMID: 37346362]
  19. Environ Sci Pollut Res Int. 2020 Jun;27(16):19087-19094 [PMID: 30612348]
  20. J Microbiol Methods. 2003 Nov;55(2):411-8 [PMID: 14529962]
  21. Bioresour Technol. 2018 Apr;254:214-223 [PMID: 29413925]
  22. Foods. 2022 Mar 26;11(7): [PMID: 35407052]
  23. J Biol Res (Thessalon). 2014 May 19;21(1):6 [PMID: 25984489]
  24. Eng Biol. 2020 Jun 25;4(2):21-24 [PMID: 36970394]
  25. Curr Opin Biotechnol. 2020 Feb;61:189-197 [PMID: 31991311]
  26. Environ Sci Technol. 2018 Jul 3;52(13):7351-7359 [PMID: 29923399]
  27. Food Chem Toxicol. 2003 Dec;41(12):1625-49 [PMID: 14563389]

Word Cloud

Created with Highcharts 10.0.0biomassfeedanimalWWwatertreatmentresidualsnitratenutrientsalternativehighwastewatermediumsafetyusingdrinkingchitosanachievedphosphatecommercialaminoacidsgrowinginterestmicroalgaecyanobacteriatraditionalhinderedproductioncostsUsingcultivationoffersolutionapproachrisksintroducingharmfulsubstancesleadingsignificantconcernsstudyaddressedchallengesselectivelyextractingnitratesphosphatesDWTRmethodpeakadsorptioncapacities44 mg/g61 mg/g25 wt%blendcombinedDWTR-nitrogenSubsequentlyextractedemployedcultivateyieldingproductivityrate015 g/L/dcomparableratessubstitutingcanachieve18 %reductionculturecostcultivatedinitiallynitrogen-deficientduelowlevelsprovedprotein-richaccounting50 %dryweightcontainedconcentrationfree1260 mg/gencompassingessentialvitrovivotoxicitytestsaffirmedbiomass'susecomponentFutureresearchaimenhanceeconomicfeasibilitysourcedevelopingefficientadsorbentsutilizingcost-effectivereagentsimplementingnutrientreusestrategiesspentmediumsProductionsafecyanobacterialAnimalDrinkingNitratePhosphateSpirulinaplatensisWastewater

Similar Articles

Cited By