The dwarf neon rainbowfish Melanotaenia praecox, a small spiny-rayed fish with potential as a new Acanthomorpha model fish: I. Fin ray ontogeny and postembryonic staging.

Kazuhide Miyamoto, Gembu Abe, Koji Tamura
Author Information
  1. Kazuhide Miyamoto: Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan. ORCID
  2. Gembu Abe: Division of Developmental Biology, Department of Functional Morphology, Faculty of Medicine, School of Life Science, Tottori University, Yonago, Japan.
  3. Koji Tamura: Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan. ORCID

Abstract

BACKGROUND: Fish fins with highly variable color patterns and morphologies have many functions. In Actinopterygii, the free parts of fins are supported by "soft rays" and "spiny rays." Spiny rays have various functions and are extremely modified in some species, but they are lacking in popular model fish such as zebrafish and medaka. Additionally, some model fish with spiny rays are difficult to maintain in ordinary laboratory systems.
RESULTS: Characteristics of the small, spiny-rayed rainbowfish Melanotaenia praecox render it useful as an experimental model species. Neither fish age nor body size correlate well with fin development during postembryonic development in this species. A four-stage developmental classification is proposed that is based on fin ray development.
CONCLUSIONS: Melanotaenia praecox is an ideal species to rear in laboratories for developmental studies. Our classification allows for postembryonic staging of this species independent of individual age and body size. Development of each fin ray may be synchronized with dorsal fin development. We discuss the differences in mechanisms regulating soft, spiny, and procurrent ray development.

Keywords

References

  1. Dev Dyn. 2015 Dec;244(12):1485-518 [PMID: 26316229]
  2. J Exp Biol. 2001 Sep;204(Pt 17):2943-58 [PMID: 11551984]
  3. PLoS One. 2013 Oct 25;8(10):e77647 [PMID: 24204902]
  4. Dev Dyn. 2019 Apr;248(4):251-283 [PMID: 30687996]
  5. Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2219770120 [PMID: 37186843]
  6. Dev Dyn. 2009 Dec;238(12):2975-3015 [PMID: 19891001]
  7. Proc Biol Sci. 2015 Nov 22;282(1819): [PMID: 26559954]
  8. J Fish Biol. 2013 Sep;83(3):448-65 [PMID: 23991867]
  9. Sci Rep. 2019 Apr 1;9(1):5413 [PMID: 30931985]
  10. Gen Comp Endocrinol. 1990 Aug;79(2):167-73 [PMID: 2391025]
  11. Sci Rep. 2022 May 7;12(1):7521 [PMID: 35525860]
  12. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34031155]
  13. Dev Growth Differ. 2021 Dec;63(9):459-466 [PMID: 34786704]
  14. Dev Biol. 2001 Oct 15;238(2):239-46 [PMID: 11784007]
  15. J Exp Biol. 2008 Jan;211(Pt 2):187-95 [PMID: 18165246]
  16. Curr Top Dev Biol. 2013;103:127-65 [PMID: 23347518]
  17. PLoS One. 2021 Dec 15;16(12):e0261331 [PMID: 34910772]
  18. BMC Dev Biol. 2018 Apr 3;18(1):8 [PMID: 29614958]
  19. Zygote. 2014 Nov;22(4):533-9 [PMID: 23659785]
  20. J Morphol. 2012 Dec;273(12):1353-66 [PMID: 22833478]
  21. PLoS One. 2012;7(7):e40627 [PMID: 22829879]
  22. Gen Comp Endocrinol. 2008 Feb 1;155(3):597-606 [PMID: 17988667]
  23. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13011-6 [PMID: 9371791]
  24. Zoological Lett. 2019 Sep 18;5:30 [PMID: 31548912]
  25. J Exp Biol. 2006 Feb;209(Pt 4):610-21 [PMID: 16449556]
  26. Proc Natl Acad Sci U S A. 2021 Jul 20;118(29): [PMID: 34230098]
  27. J Morphol. 2017 Dec;278(12):1716-1725 [PMID: 28914460]
  28. Mol Phylogenet Evol. 2013 Apr;67(1):15-27 [PMID: 23313459]
  29. J Exp Zool. 2002 Aug 15;294(2):77-90 [PMID: 12210109]
  30. Curr Biol. 2017 Jun 5;27(11):R550-R557 [PMID: 28586692]
  31. BMC Dev Biol. 2016 Jan 19;16:2 [PMID: 26787303]
  32. J Morphol. 2017 Jun;278(6):848-864 [PMID: 28370120]
  33. Sci Rep. 2021 Jul 23;11(1):15138 [PMID: 34302019]
  34. Dev Dyn. 2019 Jul;248(7):545-568 [PMID: 31070818]
  35. Dev Dyn. 2024 Sep;253(9):815-828 [PMID: 38314924]
  36. Curr Biol. 2011 Sep 27;21(18):R726-37 [PMID: 21959163]
  37. Dev Dyn. 2024 Sep;253(9):829-845 [PMID: 38323724]

Grants

  1. 22K06232/Japan Society for the Promotion of Science
  2. 20H04854/Japan Society for the Promotion of Science
  3. 22H02627/Japan Society for the Promotion of Science
  4. 21K19202/Japan Society for the Promotion of Science
  5. 21H05/Japan Society for the Promotion of Science
  6. 2022036015/Takeda Science Foundation

MeSH Term

Animals
Animal Fins
Smegmamorpha
Body Size
Models, Animal

Word Cloud

Created with Highcharts 10.0.0rayspeciesdevelopmentmodelfishfinraysMelanotaeniapraecoxpostembryonicstagingfinsfunctionsspinysmallspiny-rayedrainbowfishagebodysizedevelopmentalclassificationsoftprocurrentBACKGROUND:FishhighlyvariablecolorpatternsmorphologiesmanyActinopterygiifreepartssupported"softrays""spiny"SpinyvariousextremelymodifiedlackingpopularzebrafishmedakaAdditionallydifficultmaintainordinarylaboratorysystemsRESULTS:CharacteristicsrenderusefulexperimentalNeithercorrelatewellfour-stageproposedbasedCONCLUSIONS:idealrearlaboratoriesstudiesallowsindependentindividualDevelopmentmaysynchronizeddorsaldiscussdifferencesmechanismsregulatingdwarfneonpotentialnewAcanthomorphafish:FinontogenyAtheriniformesMelanotaeniidaesystem

Similar Articles

Cited By (2)