Short-term responses of temperate and subarctic marine diatoms to Irgarol 1051 and UV radiation: Insights into temperature interactions.

Dongquan Bi, Lixin Cao, Yuheng An, Juntian Xu, Yaping Wu
Author Information
  1. Dongquan Bi: Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.
  2. Lixin Cao: Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.
  3. Yuheng An: Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.
  4. Juntian Xu: Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.
  5. Yaping Wu: Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China. ORCID

Abstract

Phytoplankton face numerous pressures resulting from chemical and physical stressors, primarily induced by human activities. This study focuses on investigating the interactive effects of widely used antifouling agent Irgarol 1051 and UV radiation on the photo-physiology of marine diatoms from diverse latitudes, within the context of global warming. Our findings clearly shown that both Irgarol and UV radiation have a significant inhibitory impact on the photochemical performance of the three diatoms examined, with Irgarol treatment exhibiting more pronounced effects. In the case of the two temperate zone diatoms, we observed a decrease in the inhibition induced by Irgarol 1051 and UVR as the temperature increased up to 25°C. Similarly, for the subarctic species, an increase in temperature resulted in a reduction in the inhibition caused by Irgarol and UVR. These results suggest that elevated temperatures can mitigate the short-term inhibitory effects of both Irgarol and UVR on diatoms. Furthermore, our data indicate that increased temperature could significantly interact with UVR or Irgarol for temperate diatoms, while this was not the case for cold water diatoms, indicating temperate and subarctic diatoms may respond differentially under global warming.

References

  1. J Hazard Mater. 2018 Feb 15;344:146-162 [PMID: 29032095]
  2. Can J Microbiol. 1962 Apr;8:229-39 [PMID: 13902807]
  3. Mar Pollut Bull. 2022 Apr;177:113510 [PMID: 35299145]
  4. Ecotoxicol Environ Saf. 2013 Dec;98:162-70 [PMID: 24119653]
  5. Biochim Biophys Acta. 2012 Jan;1817(1):258-65 [PMID: 21565161]
  6. Ecol Evol. 2015 Apr;5(7):1538-47 [PMID: 25897392]
  7. Ecol Lett. 2006 Feb;9(2):228-41 [PMID: 16958887]
  8. Sci Total Environ. 2016 Jan 15;541:1556-1571 [PMID: 26490533]
  9. J Photochem Photobiol B. 2014 Dec;141:217-27 [PMID: 25463670]
  10. Appl Environ Microbiol. 2009 Feb;75(4):897-906 [PMID: 19088321]
  11. Photochem Photobiol. 2021 Jul;97(4):753-762 [PMID: 33394510]
  12. PLoS One. 2015 Oct 01;10(10):e0139469 [PMID: 26427046]
  13. Nat Rev Microbiol. 2007 Oct;5(10):813-9 [PMID: 17853908]
  14. Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21907-21913 [PMID: 31594847]
  15. New Phytol. 2020 Jun;226(6):1708-1724 [PMID: 32086953]
  16. Nature. 2010 Jul 29;466(7306):591-6 [PMID: 20671703]
  17. Environ Int. 2019 Dec;133(Pt A):105175 [PMID: 31629173]
  18. Mar Pollut Bull. 2021 Mar;164:112004 [PMID: 33540274]
  19. Arch Environ Contam Toxicol. 1999 Nov;37(4):472-9 [PMID: 10508894]
  20. Biol Rev Camb Philos Soc. 2013 May;88(2):349-64 [PMID: 23217173]
  21. J Exp Bot. 2000 Apr;51(345):659-68 [PMID: 10938857]
  22. Nat Commun. 2021 Nov 5;12(1):6413 [PMID: 34741038]
  23. Mar Life Sci Technol. 2022 Sep 12;5(1):116-125 [PMID: 37073326]
  24. Biochim Biophys Acta. 2012 Jan;1817(1):209-17 [PMID: 21565163]
  25. Photochem Photobiol. 2020 Sep;96(5):1074-1082 [PMID: 32222969]
  26. J Proteome Res. 2014 Dec 5;13(12):5510-23 [PMID: 25372880]
  27. Sci Total Environ. 2021 Jun 1;771:145167 [PMID: 33736151]
  28. Trends Plant Sci. 1999 Apr;4(4):130-135 [PMID: 10322546]
  29. Planta. 2000 Sep;211(4):555-62 [PMID: 11030555]
  30. Water Res. 2002 Apr;36(8):2020-8 [PMID: 12092577]
  31. Mar Pollut Bull. 2002 Jul;44(7):697-703 [PMID: 12222894]
  32. Harmful Algae. 2019 May;85:101698 [PMID: 31810528]
  33. Hydrobiologia. 2023;850(12-13):2691-2706 [PMID: 35106010]
  34. Sci Total Environ. 2015 Apr 15;512-513:526-539 [PMID: 25644848]
  35. Chemosphere. 2003 Dec;53(8):935-44 [PMID: 14505716]
  36. Ecol Lett. 2018 May;21(5):655-664 [PMID: 29575658]

MeSH Term

Humans
Diatoms
Ultraviolet Rays
Temperature
Phytoplankton
Triazines

Chemicals

irgarol 1051
Triazines

Word Cloud

Created with Highcharts 10.0.0IrgaroldiatomstemperateUVRtemperatureeffects1051UVsubarcticinducedradiationmarineglobalwarminginhibitorycaseinhibitionincreasedPhytoplanktonfacenumerouspressuresresultingchemicalphysicalstressorsprimarilyhumanactivitiesstudyfocusesinvestigatinginteractivewidelyusedantifoulingagentphoto-physiologydiverselatitudeswithincontextfindingsclearlyshownsignificantimpactphotochemicalperformancethreeexaminedtreatmentexhibitingpronouncedtwozoneobserveddecrease25°CSimilarlyspeciesincreaseresultedreductioncausedresultssuggestelevatedtemperaturescanmitigateshort-termFurthermoredataindicatesignificantlyinteractcoldwaterindicatingmayresponddifferentiallyShort-termresponsesradiation:Insightsinteractions

Similar Articles

Cited By