Broadband and large-aperture metasurface edge encoders for incoherent infrared radiation.

Brandon T Swartz, Hanyu Zheng, Gregory T Forcherio, Jason Valentine
Author Information
  1. Brandon T Swartz: Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA. ORCID
  2. Hanyu Zheng: Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA. ORCID
  3. Gregory T Forcherio: Naval Surface Warfare Center, Crane, 300 Highway 361, Crane, IN 47522, USA. ORCID
  4. Jason Valentine: Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA. ORCID

Abstract

The prevalence of computer vision systems necessitates hardware-based approaches to relieve the high computational demand of deep neural networks in resource-limited applications. One solution would be to off-load low-level image feature extraction, such as edge detection, from the digital network to the analog imaging system. To that end, this work demonstrates incoherent, broadband, low-noise optical edge detection of real-world scenes by combining the wavefront shaping of a 24-mm aperture metasurface with a refractive lens. An inverse design approach is used to optimize the metasurface for Laplacian-based edge detection across the 7.5- to 13.5-μm LWIR imaging band, allowing for facile integration with uncooled microbolometer-based LWIR imagers to encode edge information. A polarization multiplexed approach leveraging a birefringent metasurface is also demonstrated as a single-aperture implementation. This work could be applied to improve computer vision capabilities of resource-constrained systems by leveraging optical preprocessing to alleviate the computational requirements for high-accuracy image segmentation and classification.

References

  1. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  2. Nano Lett. 2018 Dec 12;18(12):7801-7808 [PMID: 30423252]
  3. Front Optoelectron. 2021 Jun;14(2):187-200 [PMID: 36637663]
  4. Nat Commun. 2021 Jan 29;12(1):680 [PMID: 33514708]
  5. Opt Express. 2020 Mar 2;28(5):6945-6965 [PMID: 32225932]
  6. Phys Rev Lett. 2018 Oct 26;121(17):173004 [PMID: 30411907]
  7. Light Sci Appl. 2022 Mar 18;11(1):62 [PMID: 35304870]
  8. Appl Opt. 1978 Apr 1;17(7):1141-51 [PMID: 20197948]
  9. IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):87-110 [PMID: 35180075]
  10. Nat Nanotechnol. 2015 Nov;10(11):937-43 [PMID: 26322944]
  11. Chem Rev. 2022 Oct 12;122(19):15356-15413 [PMID: 35750326]
  12. Nano Lett. 2018 Dec 12;18(12):7529-7537 [PMID: 30394751]
  13. Proc R Soc Lond B Biol Sci. 1980 Feb 29;207(1167):187-217 [PMID: 6102765]
  14. Natl Sci Rev. 2020 Aug 06;8(6):nwaa176 [PMID: 34691657]
  15. Opt Express. 2019 Oct 14;27(21):30308-30331 [PMID: 31684280]
  16. Appl Opt. 1989 Apr 15;28(8):1474-88 [PMID: 20548683]
  17. Nat Commun. 2022 Apr 21;13(1):2188 [PMID: 35449139]
  18. Opt Express. 2005 Feb 7;13(3):689-94 [PMID: 19494929]
  19. Nat Commun. 2023 Apr 12;14(1):2063 [PMID: 37045869]

Word Cloud

Created with Highcharts 10.0.0edgemetasurfacedetectioncomputervisionsystemscomputationalimageimagingworkincoherentopticalapproachLWIRleveragingprevalencenecessitateshardware-basedapproachesrelievehighdemanddeepneuralnetworksresource-limitedapplicationsOnesolutionoff-loadlow-levelfeatureextractiondigitalnetworkanalogsystemenddemonstratesbroadbandlow-noisereal-worldscenescombiningwavefrontshaping24-mmaperturerefractivelensinversedesignusedoptimizeLaplacian-basedacross75-135-μmbandallowingfacileintegrationuncooledmicrobolometer-basedimagersencodeinformationpolarizationmultiplexedbirefringentalsodemonstratedsingle-apertureimplementationappliedimprovecapabilitiesresource-constrainedpreprocessingalleviaterequirementshigh-accuracysegmentationclassificationBroadbandlarge-apertureencodersinfraredradiation

Similar Articles

Cited By

No available data.