Prioritizing river basins for nutrient studies.

Anthony J Tesoriero, Dale M Robertson, Christopher T Green, J K Böhlke, Judson W Harvey, Sharon L Qi
Author Information
  1. Anthony J Tesoriero: U.S. Geological Survey, Portland, OR, USA. tesorier@usgs.gov. ORCID
  2. Dale M Robertson: U.S. Geological Survey, Madison, WI, USA. ORCID
  3. Christopher T Green: U.S. Geological Survey, Moffett Field, CA, USA. ORCID
  4. J K Böhlke: U.S. Geological Survey, Reston, VA, USA. ORCID
  5. Judson W Harvey: U.S. Geological Survey, Reston, VA, USA. ORCID
  6. Sharon L Qi: U.S. Geological Survey, Lakewood, CO, USA. ORCID

Abstract

Increases in fluxes of nitrogen (N) and phosphorus (P) in the environment have led to negative impacts affecting drinking water, eutrophication, harmful algal blooms, climate change, and biodiversity loss. Because of the importance, scale, and complexity of these issues, it may be useful to consider methods for prioritizing nutrient research in representative drainage basins within a regional or national context. Two systematic, quantitative approaches were developed to (1) identify basins that geospatial data suggest are most impacted by nutrients and (2) identify basins that have the most variability in factors affecting nutrient sources and transport in order to prioritize basins for studies that seek to understand the key drivers of nutrient impacts. The "impact" approach relied on geospatial variables representing surface-water and groundwater nutrient concentrations, sources of N and P, and potential impacts on receptors (i.e., ecosystems and human health). The "variability" approach relied on geospatial variables representing surface-water nutrient concentrations, factors affecting sources and transport of nutrients, model accuracy, and potential receptor impacts. One hundred and sixty-three drainage basins throughout the contiguous United States were ranked nationally and within 18 hydrologic regions. Nationally, the top-ranked basins from the impact approach were concentrated in the Midwest, while those from the variability approach were dispersed across the nation. Regionally, the top-ranked basin selected by the two approaches differed in 15 of the 18 regions, with top-ranked basins selected by the variability approach having lower minimum concentrations and larger ranges in concentrations than top-ranked basins selected by the impact approach. The highest ranked basins identified using the variability approach may have advantages for exploring how landscape factors affect surface-water quality and how surface-water quality may affect ecosystems. In contrast, the impact approach prioritized basins in terms of human development and nutrient concentrations in both surface water and groundwater, thereby targeting areas where actions to reduce nutrient concentrations could have the largest effect on improving water availability and reducing ecosystem impacts.

Keywords

References

  1. Environ Manage. 2007 Feb;39(2):194-212 [PMID: 17122998]
  2. Sci Rep. 2017 Mar 21;7:44928 [PMID: 28322322]
  3. Science. 2008 May 16;320(5878):889-92 [PMID: 18487183]
  4. Environ Manage. 2005 Mar;35(3):330-42 [PMID: 15925975]
  5. Ecol Appl. 2017 Dec;27(8):2397-2415 [PMID: 28871655]
  6. Environ Sci Technol. 2016 Sep 6;50(17):8923-9 [PMID: 27494041]
  7. Sci Total Environ. 2020 Jun 20;722:137661 [PMID: 32192969]
  8. Environ Sci Technol. 2006 Jul 1;40(13):4126-31 [PMID: 16856726]
  9. J Environ Qual. 2016 Sep;45(5):1696-1704 [PMID: 27695770]
  10. Sci Total Environ. 2022 Feb 10;807(Pt 3):151065 [PMID: 34673076]
  11. Environ Health Perspect. 2017 Aug 03;125(8):085002 [PMID: 28893720]
  12. Environ Sci Technol. 2013 Apr 16;47(8):3623-9 [PMID: 23530900]
  13. Sci Total Environ. 2022 Feb 1;806(Pt 2):150618 [PMID: 34592272]
  14. J Environ Qual. 2010 Sep-Oct;39(5):1657-67 [PMID: 21043271]
  15. Sci Total Environ. 2019 Oct 15;687:1261-1273 [PMID: 31412460]
  16. Environ Sci Technol. 2006 Dec 15;40(24):7834-40 [PMID: 17256535]
  17. Sci Data. 2020 Aug 5;7(1):257 [PMID: 32759944]
  18. Environ Sci Technol. 2021 Jan 19;55(2):902-911 [PMID: 33356185]
  19. Environ Res Commun. 2021 Apr 16;3:1-13 [PMID: 36457483]
  20. Nature. 2009 Oct 8;461(7265):716-8 [PMID: 19812648]
  21. Environ Manage. 2010 Mar;45(3):603-15 [PMID: 20143065]
  22. Environ Sci Technol. 2010 Jul 1;44(13):4988-97 [PMID: 20540531]
  23. Environ Manage. 2004;34 Suppl 1:S71-88 [PMID: 16044554]
  24. Ambio. 2002 Mar;31(2):102-12 [PMID: 12077998]
  25. J Environ Qual. 2013 Sep;42(5):1308-26 [PMID: 24216410]
  26. J Am Water Resour Assoc. 2009 Apr;45(2):534-549 [PMID: 22457567]
  27. Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130116 [PMID: 23713116]
  28. Sci Total Environ. 2019 Mar 20;657:297-309 [PMID: 30543979]
  29. Environ Sci Technol. 2008 Feb 1;42(3):822-30 [PMID: 18323108]
  30. Glob Chang Biol. 2016 Apr;22(4):1481-9 [PMID: 26666217]
  31. Int J Environ Res Public Health. 2018 Jul 23;15(7): [PMID: 30041450]
  32. Sci Total Environ. 2021 Dec 15;800:150200 [PMID: 34625279]
  33. Environ Monit Assess. 2020 Jun 27;192(7):458 [PMID: 32594332]

MeSH Term

Humans
Rivers
Ecosystem
Environmental Monitoring
Eutrophication
Harmful Algal Bloom
Nutrients
Phosphorus
Nitrogen

Chemicals

Phosphorus
Nitrogen

Word Cloud

Created with Highcharts 10.0.0basinsapproachnutrientconcentrationsimpactsvariabilitysurface-watertop-rankedaffectinggeospatialfactorssourcesimpactselectedqualityNPwatermaydrainagewithinapproachesidentifynutrientstransportstudiesreliedvariablesrepresentinggroundwaterpotentialecosystemshumanranked18regionsaffectIncreasesfluxesnitrogenphosphorusenvironmentlednegativedrinkingeutrophicationharmfulalgalbloomsclimatechangebiodiversity lossimportancescalecomplexityissuesusefulconsidermethodsprioritizingnutrient researchrepresentativeregionalnationalcontextTwosystematicquantitativedeveloped1datasuggestare mostimpacted2orderprioritizeseekunderstandkeydrivers"impact"receptorsiehealth"variability"modelaccuracyreceptorOnehundredsixty-threethroughoutcontiguousUnitedStatesnationallyhydrologicNationallyconcentratedMidwestdispersedacrossnationRegionallybasintwodiffered15lowerminimumlargerrangeshighestidentifiedusingmay haveadvantagesexploringlandscapecontrastprioritizedtermsdevelopmentsurface watertherebytargetingareasactionsreducelargesteffectimprovingavailabilityreducingecosystemPrioritizingriverBasinselectionFederalresearchHydrologyMonitoringdesignNutrientsWater

Similar Articles

Cited By