C-Metabolic flux analysis detected a hyperoxemia-induced reduction of tricarboxylic acid cycle metabolism in granulocytes during two models of porcine acute subdural hematoma and hemorrhagic shock.

Eva-Maria Wolfschmitt, Josef Albert Vogt, Melanie Hogg, Ulrich Wachter, Nicole Stadler, Thomas Kapapa, Thomas Datzmann, David Alexander Christian Messerer, Andrea Hoffmann, Michael Gröger, Franziska Münz, René Mathieu, Simon Mayer, Tamara Merz, Pierre Asfar, Enrico Calzia, Peter Radermacher, Fabian Zink
Author Information
  1. Eva-Maria Wolfschmitt: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  2. Josef Albert Vogt: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  3. Melanie Hogg: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  4. Ulrich Wachter: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  5. Nicole Stadler: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  6. Thomas Kapapa: Clinic for Neurosurgery, University Hospital Ulm, Ulm, Germany.
  7. Thomas Datzmann: Clinic for Anesthesia and Intensive Care, University Hospital Ulm, Ulm, Germany.
  8. David Alexander Christian Messerer: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  9. Andrea Hoffmann: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  10. Michael Gröger: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  11. Franziska Münz: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  12. René Mathieu: Clinic for Neurosurgery, Bundeswehrkrankenhaus, Ulm, Germany.
  13. Simon Mayer: Clinic for Neurosurgery, Bundeswehrkrankenhaus, Ulm, Germany.
  14. Tamara Merz: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  15. Pierre Asfar: Département de Médecine Intensive - Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France.
  16. Enrico Calzia: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  17. Peter Radermacher: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.
  18. Fabian Zink: Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany.

Abstract

Introduction: Supplementation with increased inspired oxygen fractions has been suggested to alleviate the harmful effects of tissue hypoxia during hemorrhagic shock (HS) and traumatic brain injury. However, the utility of therapeutic hyperoxia in critical care is disputed to this day as controversial evidence is available regarding its efficacy. Furthermore, in contrast to its hypoxic counterpart, the effect of hyperoxia on the metabolism of circulating immune cells remains ambiguous. Both stimulating and detrimental effects are possible; the former by providing necessary oxygen supply, the latter by generation of excessive amounts of reactive oxygen species (ROS). To uncover the potential impact of increased oxygen fractions on circulating immune cells during intensive care, we have performed a C-metabolic flux analysis (MFA) on PBMCs and granulocytes isolated from two long-term, resuscitated models of combined acute subdural hematoma (ASDH) and HS in pigs with and without cardiovascular comorbidity.
Methods: Swine underwent resuscitation after 2 h of ASDH and HS up to a maximum of 48 h after HS. Animals received normoxemia (PO = 80 - 120 mmHg) or targeted hyperoxemia (PO = 200 - 250 mmHg for 24 h after treatment initiation, thereafter PO as in the control group). Blood was drawn at time points T1 = after instrumentation, T2 = 24 h post ASDH and HS, and T3 = 48 h post ASDH and HS. PBMCs and granulocytes were isolated from whole blood to perform electron spin resonance spectroscopy, high resolution respirometry and C-MFA. For the latter, we utilized a parallel tracer approach with 1,2-C glucose, U-C glucose, and U-C glutamine, which covered essential pathways of glucose and glutamine metabolism and supplied redundant data for robust Bayesian estimation. Gas chromatography-mass spectrometry further provided multiple fragments of metabolites which yielded additional labeling information. We obtained precise estimations of the fluxes, their joint credibility intervals, and their relations, and characterized common metabolic patterns with principal component analysis (PCA).
Results: C-MFA indicated a hyperoxia-mediated reduction in tricarboxylic acid (TCA) cycle activity in circulating granulocytes which encompassed fluxes of glutamine uptake, TCA cycle, and oxaloacetate/aspartate supply for biosynthetic processes. We further detected elevated superoxide levels in the swine strain characterized by a hypercholesterolemic phenotype. PCA revealed cell type-specific behavioral patterns of metabolic adaptation in response to ASDH and HS that acted irrespective of swine strains or treatment group.
Conclusion: In a model of resuscitated porcine ASDH and HS, we saw that ventilation with increased inspiratory O concentrations (PO = 200 - 250 mmHg for 24 h after treatment initiation) did not impact mitochondrial respiration of PBMCs or granulocytes. However, Bayesian C-MFA results indicated a reduction in TCA cycle activity in granulocytes compared to cells exposed to normoxemia in the same time period. This change in metabolism did not seem to affect granulocytes' ability to perform phagocytosis or produce superoxide radicals.

Keywords

References

  1. Biotechnol Bioeng. 2002 Nov 20;80(4):477-9 [PMID: 12325156]
  2. Ann Intensive Care. 2021 Jun 2;11(1):88 [PMID: 34076802]
  3. Biomedicines. 2018 May 15;6(2): [PMID: 29762526]
  4. Thrombosis. 2010;2010:461238 [PMID: 22091368]
  5. Front Mol Biosci. 2023 Apr 17;10:1113570 [PMID: 37138659]
  6. Shock. 2010 Feb;33(2):113-22 [PMID: 20081495]
  7. Nat Immunol. 2018 Apr;19(4):327-341 [PMID: 29507356]
  8. Crit Care. 2021 Dec 19;25(1):440 [PMID: 34924022]
  9. Redox Biol. 2016 Aug;8:28-42 [PMID: 26741399]
  10. Shock. 2017 Oct;48(4):390-400 [PMID: 28915214]
  11. Eur J Anaesthesiol. 2017 Mar;34(3):141-149 [PMID: 28146458]
  12. RSC Adv. 2022 Sep 7;12(39):25528-25548 [PMID: 36199351]
  13. Front Immunol. 2023 Feb 23;14:1125594 [PMID: 36911662]
  14. J Biol Chem. 2015 Sep 4;290(36):22174-83 [PMID: 26198639]
  15. React Oxyg Species (Apex). 2016;1(1):81-98 [PMID: 28133629]
  16. Curr Opin Biotechnol. 2015 Aug;34:189-201 [PMID: 25731751]
  17. Cell. 2015 Jul 30;162(3):540-51 [PMID: 26232224]
  18. Metab Eng. 2007 Jan;9(1):68-86 [PMID: 17088092]
  19. Tissue Eng Part C Methods. 2013 Feb;19(2):156-65 [PMID: 22838642]
  20. Immunity. 2017 Sep 19;47(3):466-480.e5 [PMID: 28916263]
  21. FASEB J. 2017 Feb;31(2):663-673 [PMID: 27799347]
  22. Am J Respir Crit Care Med. 2020 Sep 15;202(6):830-842 [PMID: 32520577]
  23. Shock. 2002 Oct;18(4):331-5 [PMID: 12392276]
  24. Mol Metab. 2022 Mar;57:101424 [PMID: 34954109]
  25. Cell Stem Cell. 2010 Sep 3;7(3):380-90 [PMID: 20804973]
  26. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9753-8 [PMID: 10944234]
  27. Metabolites. 2023 Dec 29;14(1): [PMID: 38248827]
  28. Am J Hematol. 1985 Mar;18(3):269-74 [PMID: 3976643]
  29. Pharmacol Res. 2020 Jan;151:104536 [PMID: 31734346]
  30. Circulation. 1976 Mar;53(3):411-7 [PMID: 1248074]
  31. J Biol Chem. 1955 Nov;217(1):409-27 [PMID: 13271404]
  32. Arterioscler Thromb Vasc Biol. 2021 Oct;41(10):2598-2615 [PMID: 34348488]
  33. PLoS One. 2009;4(2):e4414 [PMID: 19212441]
  34. Nat Rev Immunol. 2016 Sep;16(9):553-65 [PMID: 27396447]
  35. N Engl J Med. 2013 Oct 31;369(18):1726-34 [PMID: 24171518]
  36. Shock. 2017 Apr;47(4):436-444 [PMID: 27648689]
  37. Shock. 2021 Mar 1;55(3):407-417 [PMID: 32826816]
  38. J Immunol. 2003 Feb 15;170(4):1964-72 [PMID: 12574365]
  39. Biochim Biophys Acta Mol Basis Dis. 2019 Dec 1;1865(12):165542 [PMID: 31473341]
  40. Int J Mol Sci. 2019 Dec 31;21(1): [PMID: 31906243]
  41. Front Immunol. 2023 Apr 11;14:1123196 [PMID: 37114041]
  42. Front Med (Lausanne). 2022 Aug 22;9:971882 [PMID: 36072939]
  43. Free Radic Biol Med. 2004 May 15;36(10):1233-40 [PMID: 15110388]
  44. Am J Respir Cell Mol Biol. 2003 Apr;28(4):443-50 [PMID: 12654633]
  45. Crit Care Med. 2017 Dec;45(12):e1270-e1279 [PMID: 29028763]
  46. J Exp Med. 2016 Jan 11;213(1):15-23 [PMID: 26694970]
  47. JAMA Neurol. 2016 May 1;73(5):542-50 [PMID: 27019039]
  48. Cell. 2015 Jul 30;162(3):552-63 [PMID: 26232225]
  49. Immune Netw. 2020 Dec 24;20(6):e46 [PMID: 33425431]
  50. Shock. 2021 Sep 1;56(3):384-395 [PMID: 33725433]
  51. Front Immunol. 2022 Jun 16;13:901005 [PMID: 35784322]

MeSH Term

Animals
Swine
Glutamine
Citric Acid Cycle
Metabolic Flux Analysis
Shock, Hemorrhagic
Hematoma, Subdural, Acute
Superoxides
Bayes Theorem
Hyperoxia
Granulocytes
Oxygen
Glucose

Chemicals

Glutamine
Superoxides
Oxygen
Glucose

Word Cloud

Created with Highcharts 10.0.0HSgranulocytesASDH=oxygenmetabolismhcellsPOglucoseglutaminecycleincreasedhyperoxiacirculatinganalysisPBMCs-mmHg24treatmentC-MFABayesianreductionTCAfractionseffectshemorrhagicshockHowevercareimmunesupplylatterreactivespeciesimpactfluxisolatedtworesuscitatedmodelsacutesubduralhematomanormoxemia200250initiationgrouptimepostbloodperformU-CfluxescharacterizedmetabolicpatternsPCAindicatedtricarboxylicacidactivitydetectedsuperoxideswineporcineIntroduction:SupplementationinspiredsuggestedalleviateharmfultissuehypoxiatraumaticbraininjuryutilitytherapeuticcriticaldisputeddaycontroversialevidenceavailableregardingefficacyFurthermorecontrasthypoxiccounterparteffectremainsambiguousstimulatingdetrimentalpossibleformerprovidingnecessarygenerationexcessiveamountsROSuncoverpotentialintensiveperformedC-metabolicMFAlong-termcombinedpigswithoutcardiovascularcomorbidityMethods:Swineunderwentresuscitation2maximum48Animalsreceived80120targetedhyperoxemiathereaftercontrolBlooddrawnpointsT1instrumentationT2T348 hwholeelectronspinresonancespectroscopyhighresolutionrespirometryutilizedparalleltracerapproach12-CcoveredessentialpathwayssuppliedredundantdatarobustestimationGaschromatography-massspectrometryprovidedmultiplefragmentsmetabolitesyieldedadditionallabelinginformationobtainedpreciseestimationsjointcredibilityintervalsrelationscommonprincipalcomponentResults:hyperoxia-mediatedencompasseduptakeoxaloacetate/aspartatebiosyntheticprocesseselevatedlevelsstrainhypercholesterolemicphenotyperevealedcelltype-specificbehavioraladaptationresponseactedirrespectivestrainsConclusion:modelsawventilationinspiratoryOconcentrationsmitochondrialrespirationresultscomparedexposedperiodchangeseemaffectgranulocytes'abilityphagocytosisproduceradicalsC-Metabolichyperoxemia-inducedmodelingutilizationimmunometabolismmassisotopomerdistributionperipheralmononuclear

Similar Articles

Cited By