Insights into innate immune cell evasion by .

Xinglv Wang, Hongrong Wu, Chunxia Fang, Zhongyu Li
Author Information
  1. Xinglv Wang: Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China, Hengyang, China.
  2. Hongrong Wu: Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China, Hengyang, China.
  3. Chunxia Fang: Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China, Hengyang, China.
  4. Zhongyu Li: Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China, Hengyang, China.

Abstract

, is a kind of obligate intracellular pathogen. The removal of relies primarily on specific cellular immunity. It is currently considered that CD4 Th1 cytokine responses are the major protective immunity against infection and reinfection rather than CD8 T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that faces is the innate immune response. As the "sentry" of the body, mast cells attempt to engulf and remove . Dendritic cells present antigen of to the "commanders" (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body's "combat troops" and produce immunity against in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of . The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by infections tend to be insidious and recalcitrant. As a consequence, has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of infection.

Keywords

References

  1. J Reprod Immunol. 2021 Jun;145:103307 [PMID: 33725527]
  2. Infect Immun. 2010 Oct;78(10):4374-83 [PMID: 20660610]
  3. mBio. 2016 Dec 13;7(6): [PMID: 27965446]
  4. Front Immunol. 2022 Aug 19;13:1004415 [PMID: 36059458]
  5. Trends Microbiol. 2023 Mar;31(3):270-279 [PMID: 36175276]
  6. Cell Metab. 2018 Sep 4;28(3):432-448.e4 [PMID: 29937375]
  7. Acta Pharm Sin B. 2021 Apr;11(4):941-960 [PMID: 33996408]
  8. Cell Microbiol. 2008 Sep;10(9):1879-92 [PMID: 18503636]
  9. FEMS Immunol Med Microbiol. 2005 Aug 1;45(2):113-20 [PMID: 16051062]
  10. Front Immunol. 2014 Oct 27;5:534 [PMID: 25386180]
  11. Front Microbiol. 2019 May 07;10:919 [PMID: 31134002]
  12. Nat Rev Microbiol. 2016 Jun;14(6):385-400 [PMID: 27108705]
  13. Infect Immun. 2017 Apr 21;85(5): [PMID: 28223346]
  14. Infect Immun. 1996 Nov;64(11):4830-3 [PMID: 8890246]
  15. Clin Vaccine Immunol. 2017 Apr 5;24(4): [PMID: 28100498]
  16. Elife. 2022 Sep 26;11: [PMID: 36155135]
  17. Mol Cell Biochem. 2022 Jan;477(1):205-212 [PMID: 34652537]
  18. Diagnostics (Basel). 2022 Jul 25;12(8): [PMID: 35892506]
  19. JAMA Netw Open. 2020 Oct 1;3(10):e2018799 [PMID: 33026447]
  20. Immunol Res. 2015 Dec;63(1-3):153-66 [PMID: 26427372]
  21. Infect Immun. 2020 Jun 22;88(7): [PMID: 32341118]
  22. BMC Microbiol. 2023 Mar 4;23(1):58 [PMID: 36870960]
  23. Infect Immun. 2011 Jul;79(7):2928-35 [PMID: 21536799]
  24. Med Microbiol Immunol. 2021 Feb;210(1):13-32 [PMID: 33206237]
  25. Am J Reprod Immunol. 2017 Dec;78(6): [PMID: 28921726]
  26. JBRA Assist Reprod. 2020 Oct 06;24(4):492-497 [PMID: 32496735]
  27. Cureus. 2022 Jan 17;14(1):e21331 [PMID: 35186589]
  28. PLoS One. 2015 Nov 25;10(11):e0143593 [PMID: 26606059]
  29. Nat Commun. 2021 Sep 15;12(1):5454 [PMID: 34526512]
  30. Poult Sci. 2020 Apr;99(4):1906-1913 [PMID: 32241470]
  31. Microb Pathog. 2022 Dec;173(Pt A):105812 [PMID: 36209970]
  32. Biomed Res Int. 2017;2017:1592365 [PMID: 28660207]
  33. J Exp Med. 1998 Sep 7;188(5):809-18 [PMID: 9730883]
  34. Expert Rev Anti Infect Ther. 2019 Mar;17(3):189-200 [PMID: 30698042]
  35. Pharmacol Res. 2020 Nov;161:105119 [PMID: 32781284]
  36. Nat Rev Microbiol. 2023 Jul;21(7):448-462 [PMID: 36788308]
  37. J Immunol. 2008 Feb 15;180(4):2459-65 [PMID: 18250455]
  38. Virulence. 2022 Dec;13(1):444-457 [PMID: 35266440]
  39. Front Immunol. 2018 Mar 01;9:376 [PMID: 29545798]
  40. J Infect Dis. 2021 Aug 16;224(12 Suppl 2):S39-S46 [PMID: 34396413]
  41. Int J Mol Sci. 2020 Oct 13;21(20): [PMID: 33066279]
  42. Pathog Dis. 2016 Oct;74(7): [PMID: 27620201]
  43. Adv Clin Exp Med. 2012 Nov-Dec;21(6):799-808 [PMID: 23457138]
  44. Infect Immun. 2012 Jan;80(1):195-205 [PMID: 22025513]
  45. J Biol Regul Homeost Agents. 2020 May-Jun;34(3):977-986 [PMID: 32664712]
  46. J Immunol. 2009 Feb 1;182(3):1602-8 [PMID: 19155509]
  47. PLoS One. 2012;7(11):e47487 [PMID: 23189125]
  48. Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6892-E6901 [PMID: 28765368]
  49. Nat Microbiol. 2018 Jul;3(7):824-835 [PMID: 29946164]
  50. J Immunother Cancer. 2022 Sep;10(9): [PMID: 36137649]
  51. Infect Immun. 1998 Dec;66(12):5867-75 [PMID: 9826367]
  52. Immunity. 2009 Aug 21;31(2):184-96 [PMID: 19699170]
  53. PLoS Pathog. 2016 Aug 09;12(8):e1005822 [PMID: 27505160]
  54. IUBMB Life. 2018 May;70(5):384-392 [PMID: 29573124]
  55. Front Immunol. 2015 May 15;6:233 [PMID: 26029217]
  56. Microb Pathog. 2023 May;178:106056 [PMID: 36893904]
  57. Front Cell Infect Microbiol. 2019 Nov 26;9:399 [PMID: 32039039]
  58. Front Cell Infect Microbiol. 2021 Sep 14;11:718350 [PMID: 34595131]
  59. J Exp Med. 1999 Jun 21;189(12):1931-8 [PMID: 10377188]
  60. Reproduction. 2017 Oct;154(4):R99-R110 [PMID: 28878094]
  61. Front Immunol. 2021 Apr 15;12:662096 [PMID: 33936099]
  62. Mol Cell Biochem. 2019 Feb;452(1-2):167-176 [PMID: 30132214]
  63. Nat Commun. 2017 Apr 25;8:15013 [PMID: 28440293]
  64. J Immunol. 2005 Sep 1;175(5):3197-206 [PMID: 16116210]
  65. mBio. 2021 Jun 29;12(3):e0117921 [PMID: 34101486]
  66. J Biol Chem. 2010 Dec 31;285(53):41320-7 [PMID: 21041296]
  67. Front Immunol. 2021 Nov 08;12:717311 [PMID: 34819931]
  68. Trends Microbiol. 2021 Nov;29(11):1004-1012 [PMID: 33865675]
  69. FEMS Immunol Med Microbiol. 2012 Jun;65(1):32-42 [PMID: 22251247]
  70. Infect Immun. 2019 Nov 18;87(12): [PMID: 31591168]
  71. Hum Vaccin Immunother. 2014;10(9):2664-73 [PMID: 25483666]
  72. Curr Opin Immunol. 2019 Apr;57:23-31 [PMID: 30685692]
  73. J Biol Chem. 2022 Sep;298(9):102338 [PMID: 35931114]
  74. J Cell Mol Med. 2020 Aug;24(15):8532-8544 [PMID: 32643865]
  75. PLoS Negl Trop Dis. 2019 Sep 19;13(9):e0007674 [PMID: 31536488]
  76. J Immunol. 2015 Apr 15;194(8):3840-51 [PMID: 25754739]
  77. Front Immunol. 2016 Sep 09;7:324 [PMID: 27667991]
  78. Ann N Y Acad Sci. 2013 May;1285:97-114 [PMID: 23692567]
  79. mBio. 2019 Apr 23;10(2): [PMID: 31015326]
  80. Cell Host Microbe. 2022 Dec 14;30(12):1671-1684.e9 [PMID: 36084633]
  81. Immunology. 2002 Feb;105(2):213-21 [PMID: 11872097]
  82. Cell Mol Immunol. 2017 Oct;14(10):850-861 [PMID: 27796286]
  83. Infect Immun. 2020 Feb 20;88(3): [PMID: 31818961]
  84. Microbes Infect. 2019 Mar;21(2):73-84 [PMID: 30528899]
  85. J Immunol. 2006 Nov 15;177(10):7067-75 [PMID: 17082623]
  86. Clin Microbiol Rev. 2014 Apr;27(2):346-70 [PMID: 24696438]
  87. Microbiol Spectr. 2022 Dec 21;10(6):e0281722 [PMID: 36219107]
  88. Cell Host Microbe. 2022 Dec 14;30(12):1685-1700.e10 [PMID: 36395759]
  89. BMC Gastroenterol. 2022 Apr 8;22(1):171 [PMID: 35395750]
  90. Cytokine. 2013 Aug;63(2):151-65 [PMID: 23673287]
  91. Cell. 1992 May 29;69(5):861-9 [PMID: 1591780]
  92. Infect Immun. 2020 Jul 21;88(8): [PMID: 32423914]
  93. J Allergy Clin Immunol. 2021 May;147(5):1549-1560 [PMID: 33965092]
  94. Hum Vaccin Immunother. 2016 Mar 3;12(3):806-28 [PMID: 26513024]
  95. Med Sci Monit. 2020 Jul 07;26:e923909 [PMID: 32634134]
  96. Int J Mol Sci. 2014 Dec 30;16(1):724-35 [PMID: 25561227]
  97. Scand J Immunol. 2023 May;97(5):e13263 [PMID: 36872855]
  98. Immunol Cell Biol. 2016 Feb;94(2):208-12 [PMID: 26323581]
  99. Diagn Microbiol Infect Dis. 2022 Jul;103(3):115715 [PMID: 35598409]
  100. Front Immunol. 2022 Feb 03;13:837767 [PMID: 35185930]
  101. Microb Cell. 2019 Aug 21;6(9):414-449 [PMID: 31528632]
  102. PLoS Negl Trop Dis. 2016 May 24;10(5):e0004734 [PMID: 27219121]
  103. Immunol Cell Biol. 2015 Apr;93(4):347-54 [PMID: 25776842]
  104. J Bacteriol. 2019 Dec 6;202(1): [PMID: 31611288]
  105. Microbiol Spectr. 2019 May;7(3): [PMID: 31111817]
  106. BMC Immunol. 2017 May 19;18(1):27 [PMID: 28525970]
  107. Cold Spring Harb Perspect Med. 2013 May 01;3(5):a010256 [PMID: 23637308]
  108. PLoS One. 2013 Aug 14;8(8):e69421 [PMID: 23967058]
  109. J Innate Immun. 2018;10(5-6):432-441 [PMID: 29642066]
  110. Immunol Rev. 2023 Mar;314(1):210-228 [PMID: 36345955]
  111. Cell Death Differ. 2022 Oct;29(10):2046-2059 [PMID: 35397654]
  112. Infect Immun. 2015 Jun;83(6):2234-41 [PMID: 25776755]
  113. Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):2216-2221 [PMID: 29440378]
  114. Cell Microbiol. 2017 Apr;19(4): [PMID: 27739160]

MeSH Term

Humans
Chlamydia trachomatis
CD8-Positive T-Lymphocytes
Immunity, Innate
Chlamydia Infections
Interferon-gamma
Lymphocytes

Chemicals

Interferon-gamma

Word Cloud

Created with Highcharts 10.0.0cellsimmunityinnateimmuneinfectionTprotectiveroleevasionprocessnaturalkillerkindobligateintracellularpathogenremovalreliesprimarilyspecificcellularcurrentlyconsideredCD4Th1cytokineresponsesmajorreinfectionratherCD8non-specificalsoplaysimportantsurviveinsidefirstfacesresponse"sentry"bodymastattemptengulfremoveDendriticpresentantigen"commanders"MHC-IMHC-IIIFN-γproducedactivatedNKactivatesmacrophagesformbody's"combattroops"producetissuesbloodadditioneosinophilsbasophilslymphoidILCsNKTγδTB-1underestimatedinsufficientsexuallytransmitteddiseasesSTDscausedinfectionstendinsidiousrecalcitrantconsequencedevelopeduniquemechanismtriggersinflammatoryimmunopathologyactsbridgepathologicaladaptivereviewfocusesrecentadvancesevadesvariouscontributesvaccinedevelopmentunderstandingpathophysiologicconsequencesInsightscellChlamydiatrachomatissurvivalgrowth

Similar Articles

Cited By (8)