Exosomes as nanostructures deliver miR-204 in alleviation of mitochondrial dysfunction in diabetic nephropathy through suppressing methyltransferase-like 7A-mediated CIDEC N6-methyladenosine methylation.

Juan Jin, Yiwei Shang, Siqiang Zheng, Limiao Dai, Jiyu Tang, Xueyan Bian, Qiang He
Author Information
  1. Juan Jin: Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China.
  2. Yiwei Shang: Clinical School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310004, China.
  3. Siqiang Zheng: Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China.
  4. Limiao Dai: Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China.
  5. Jiyu Tang: Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China.
  6. Xueyan Bian: Department of Nephrology, Ningbo First Hospital, Ningbo, Zhejiang 315010, China.
  7. Qiang He: Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China.

Abstract

OBJECTIVE: The exosomal cargo mainly comprises proteins, lipids, and microRNAs (miRNAs). Among these, miRNAs undertake multiple biological effects of exosomes (Exos). Some stem cell-derived exosomal miRNAs have shown the potential to treat diabetic nephropathy (DN). However, there is little research into the therapeutic effects of adipose-derived stem cell (ADSC)-derived exosomal miRNAs on DN. We aimed to explore the potential of miR-204-modified ADSC-derived Exos to mitigate DN.
METHODS: Exos were extracted and identified from ADSCs. Histopathological injury, oxidative stress (OS), mitochondrial function, cell viability, and apoptosis were assessed to explore the effects of ADSC-derived Exos on DN. For mechanism exploration, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure miR-204, methyltransferase (METTL3, METTL14, and METTL7A), and CIDEC. Also, CIDEC m6A methylation and miR-204-METTL7A, and METTL7A-CIDEC interactions were determined.
RESULTS: Initially, OS-induced mitochondrial dysfunction was observed in DN rats. ADSC-derived Exos inhibited histopathological injury, cell apoptosis, OS, and mitochondrial dysfunction in DN rats. The similar therapeutic effects of ADSC-derived Exos were detected in the model. Intriguingly, miR-204 was released by ADSC-derived Exos and its upregulation enhanced the anti-DN effects of Exos. Mechanically, miR-204 reduced METTL7A expression to CIDEC m6A methylation, thus suppressing OS and mitochondrial dysfunction.
CONCLUSIONS: ADSC-derived exosomal miR-204 rescued OS-induced mitochondrial dysfunction by inhibiting METTL7A-mediated CIDEC m6A methylation. This study first revealed the significant role of ADSC-derived exosomal miR-204 in DN, paving the way for the development of novel therapeutic strategies to improve the clinical outcomes of DN patients.

Keywords

References

  1. J Diabetes Investig. 2018 Jul;9(4):741-752 [PMID: 29078040]
  2. Stem Cell Res Ther. 2022 Apr 27;13(1):171 [PMID: 35477552]
  3. Contrast Media Mol Imaging. 2022 Aug 16;2022:3188992 [PMID: 36072619]
  4. Curr Drug Targets. 2022;23(15):1418-1429 [PMID: 35993461]
  5. Biochem Genet. 2022 Oct;60(5):1471-1487 [PMID: 34731387]
  6. J Transl Med. 2022 Jan 28;20(1):44 [PMID: 35090502]
  7. Mol Ther. 2022 Apr 6;30(4):1721-1740 [PMID: 34995800]
  8. Cells. 2021 Oct 09;10(10): [PMID: 34685675]
  9. J Am Soc Nephrol. 2020 May;31(5):946-961 [PMID: 32253273]
  10. Biomed Pharmacother. 2021 Dec;144:112267 [PMID: 34624679]
  11. Acta Biochim Biophys Sin (Shanghai). 2022 Jan 25;54(2):163-172 [PMID: 35130617]
  12. Front Endocrinol (Lausanne). 2022 May 26;13:888611 [PMID: 35721758]
  13. Oxid Med Cell Longev. 2019 Jun 02;2019:2346580 [PMID: 31281569]
  14. Gastroenterology. 2015 Oct;149(4):1030-41.e6 [PMID: 26099526]
  15. Am J Transl Res. 2022 Apr 15;14(4):2280-2290 [PMID: 35559414]
  16. Kidney360. 2020 Sep 24;1(9):982-992 [PMID: 34189465]
  17. Cell Biosci. 2021 Jul 27;11(1):147 [PMID: 34315538]
  18. Sci Rep. 2020 Mar 16;10(1):4782 [PMID: 32179813]
  19. J Hematol Oncol. 2018 Mar 27;11(1):48 [PMID: 29587823]
  20. Iran J Basic Med Sci. 2022 Nov;25(11):1341-1348 [PMID: 36474578]
  21. Redox Biol. 2021 Sep;45:102033 [PMID: 34119876]
  22. Biomedicines. 2022 Jul 09;10(7): [PMID: 35884960]
  23. Int J Mol Sci. 2022 Sep 05;23(17): [PMID: 36077582]
  24. Front Oncol. 2021 Feb 23;11:624395 [PMID: 33718187]
  25. Phytomedicine. 2019 Sep;62:152949 [PMID: 31102891]
  26. Eur Rev Med Pharmacol Sci. 2018 Aug;22(16):5248-5254 [PMID: 30178848]
  27. J Exp Clin Cancer Res. 2022 Jan 3;41(1):4 [PMID: 34980213]
  28. Korean J Physiol Pharmacol. 2020 Sep 1;24(5):403-412 [PMID: 32830147]
  29. Biomolecules. 2022 Feb 23;12(3): [PMID: 35327540]
  30. Gynecol Oncol. 2020 Apr;157(1):268-279 [PMID: 31955862]
  31. J Cell Mol Med. 2021 Dec;25(23):10798-10813 [PMID: 31568645]
  32. Am J Transl Res. 2021 Jun 15;13(6):6423-6430 [PMID: 34306382]
  33. Cancer Cell Int. 2023 Nov 3;23(1):260 [PMID: 37924099]
  34. Sci Rep. 2020 Feb 12;10(1):2440 [PMID: 32051470]
  35. FEBS J. 2010 Oct;277(20):4173-83 [PMID: 20945533]
  36. Stem Cell Res Ther. 2019 Mar 15;10(1):95 [PMID: 30876481]
  37. J Am Soc Nephrol. 2020 Jul;31(7):1539-1554 [PMID: 32487559]
  38. Cells. 2018 Nov 22;7(12): [PMID: 30467302]
  39. J Diabetes Investig. 2021 Aug;12(8):1336-1345 [PMID: 33655702]
  40. J Diabetes Res. 2020 May 2;2020:3847171 [PMID: 32455132]
  41. Mol Med. 2021 Sep 9;27(1):106 [PMID: 34503454]
  42. Biomed Res Int. 2022 Sep 12;2022:4547312 [PMID: 36132073]
  43. Front Pharmacol. 2022 May 12;13:901234 [PMID: 35645821]
  44. Int J Mol Med. 2020 Dec;46(6):1958-1972 [PMID: 33125109]
  45. Nucleic Acids Res. 2020 Jun 19;48(11):6251-6264 [PMID: 32406913]
  46. Oxid Med Cell Longev. 2022 Nov 16;2022:8418820 [PMID: 36439687]
  47. Hum Exp Toxicol. 2022 Jan-Dec;41:9603271221143713 [PMID: 36510688]
  48. Biomed Res Int. 2020 Feb 21;2020:2685305 [PMID: 32149094]
  49. Int J Mol Sci. 2018 Oct 26;19(11): [PMID: 30373106]
  50. BMC Cancer. 2022 Jul 21;22(1):804 [PMID: 35864471]
  51. Oxid Med Cell Longev. 2020 Oct 17;2020:3232869 [PMID: 33193999]
  52. Front Endocrinol (Lausanne). 2021 Apr 28;12:669954 [PMID: 33995287]
  53. Cell Stress Chaperones. 2021 Mar;26(2):311-321 [PMID: 33161510]

MeSH Term

Humans
Rats
Animals
Exosomes
Diabetic Nephropathies
MicroRNAs
Methyltransferases
Methylation
Nanostructures
Mitochondrial Diseases
Diabetes Mellitus

Chemicals

MicroRNAs
Methyltransferases
METTL3 protein, human
MIRN204 microRNA, human
MIRN204 microRNA, rat

Word Cloud

Created with Highcharts 10.0.0ExosDNADSC-derivedmitochondrialmiR-204dysfunctionexosomaleffectsCIDECmiRNAsmethylationdiabeticnephropathytherapeuticcellOSm6AstempotentialexploreinjuryapoptosisMETTL7AOS-inducedratssuppressingmethyltransferase-likeOBJECTIVE:cargomainlycomprisesproteinslipidsmicroRNAsAmongundertakemultiplebiologicalexosomescell-derivedshowntreatHoweverlittleresearchadipose-derivedADSC-derivedaimedmiR-204-modifiedmitigateMETHODS:extractedidentifiedADSCsHistopathologicaloxidativestressfunctionviabilityassessedmechanismexplorationquantitativereal-timepolymerasechainreactionqRT-PCRwesternblottingusedmeasuremethyltransferaseMETTL3METTL14AlsomiR-204-METTL7AMETTL7A-CIDECinteractionsdeterminedRESULTS:InitiallyobservedinhibitedhistopathologicalsimilardetectedmodelIntriguinglyreleasedupregulationenhancedanti-DNMechanicallyreducedexpressionthusCONCLUSIONS:rescuedinhibitingMETTL7A-mediatedstudyfirstrevealedsignificantrolepavingwaydevelopmentnovelstrategiesimproveclinicaloutcomespatientsExosomesnanostructuresdeliveralleviation7A-mediatedN6-methyladenosineexosome7AmicroRNA-204

Similar Articles

Cited By