Chitosan and Chitosan Nanoparticles Differentially Alleviate Salinity Stress in L. Plants.

Mekhled M Alenazi, Aya M El-Ebidy, Omar A El-Shehaby, Mahmoud F Seleiman, Khalid J Aldhuwaib, Heba M M Abdel-Aziz
Author Information
  1. Mekhled M Alenazi: Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
  2. Aya M El-Ebidy: Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
  3. Omar A El-Shehaby: Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
  4. Mahmoud F Seleiman: Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia. ORCID
  5. Khalid J Aldhuwaib: School of Biological Sciences, University of Reading, Reading RG6 6EX, UK.
  6. Heba M M Abdel-Aziz: Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. ORCID

Abstract

Salinity stress can significantly cause negative impacts on the physiological and biochemical traits of plants and, consequently, a reduction in the yield productivity of crops. Therefore, the current study aimed to investigate the effects of chitosan (Cs) and chitosan nanoparticles (CsNPs) to mitigate salinity stress (i.e., 25, 50, 100, and 200 mM NaCl) and improve pigment fractions, carbohydrates content, ions content, proline, hydrogen peroxide, lipid peroxidation, electrolyte leakage content, and the antioxidant system of L. grown in clay-sandy soil. Methacrylic acid was used to synthesize CsNPs, with an average size of 40 ± 2 nm. Salinity stress negatively affected yield traits, pigment fractions, and carbohydrate content. However, in plants grown under salt stress, the application of either Cs or CsNPs significantly improved yield, pigment fractions, carbohydrate content, proline, and the antioxidant system, while these treatments reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage. The positive effects of CsNPs were shown to be more beneficial than Cs when applied exogenously to plants grown under salt stress. In this context, it could be concluded that CsNPs could be used to mitigate salt stress effects on L. plants grown in saline soils.

Keywords

References

  1. J Proteome Res. 2017 Aug 4;16(8):3039-3052 [PMID: 28703589]
  2. Plants (Basel). 2023 Feb 04;12(4): [PMID: 36840038]
  3. Sci Rep. 2022 Jul 25;12(1):12677 [PMID: 35879515]
  4. Metallomics. 2015 Dec;7(12):1584-94 [PMID: 26463441]
  5. Nat Protoc. 2007;2(4):875-7 [PMID: 17446889]
  6. Arch Biochem Biophys. 1968 Apr;125(1):189-98 [PMID: 5655425]
  7. J Plant Physiol. 2011 May 15;168(8):807-15 [PMID: 21112120]
  8. Biochem J. 1954 Jul;57(3):508-14 [PMID: 13181867]
  9. Plants (Basel). 2022 Feb 11;11(4): [PMID: 35214827]
  10. Ecotoxicol Environ Saf. 2021 Sep 1;220:112402 [PMID: 34090105]
  11. Nanomaterials (Basel). 2020 Sep 24;10(10): [PMID: 32987697]
  12. Molecules. 2019 Aug 21;24(17): [PMID: 31438533]
  13. Crit Rev Biotechnol. 2019 Dec;39(8):999-1014 [PMID: 31448647]
  14. Plant Physiol Biochem. 2017 Jan;110:194-209 [PMID: 27269705]
  15. Molecules. 2021 Jul 05;26(13): [PMID: 34279430]
  16. Carbohydr Polym. 2022 May 15;284:119189 [PMID: 35287907]
  17. Nanomaterials (Basel). 2021 Mar 09;11(3): [PMID: 33803416]
  18. Biochem Biophys Res Commun. 1972 Jan 31;46(2):849-54 [PMID: 4400444]
  19. Polymers (Basel). 2018 Jan 26;10(2): [PMID: 30966154]
  20. Plant Physiol Biochem. 2021 May;162:291-300 [PMID: 33714144]
  21. Ecotoxicol Environ Saf. 2005 Mar;60(3):324-49 [PMID: 15590011]
  22. Methods Enzymol. 1979;62:3-11 [PMID: 440112]
  23. Int J Biol Macromol. 2015;77:36-51 [PMID: 25748851]
  24. Polymers (Basel). 2022 Apr 05;14(7): [PMID: 35406347]
  25. Sci Rep. 2021 Jan 13;11(1):1249 [PMID: 33441913]
  26. Sci Rep. 2022 Oct 28;12(1):18165 [PMID: 36307527]
  27. Plant Cell Physiol. 2011 Apr;52(4):663-75 [PMID: 21441236]
  28. Environ Toxicol Chem. 2014 Nov;33(11):2429-37 [PMID: 25066835]
  29. Bot Stud. 2014 Dec;55(1):57 [PMID: 28510976]
  30. J Colloid Interface Sci. 2008 May 15;321(2):477-83 [PMID: 18295778]
  31. Plants (Basel). 2020 Sep 10;9(9): [PMID: 32927707]
  32. Environ Int. 2014 Feb;63:224-35 [PMID: 24333990]
  33. Protoplasma. 2012 Apr;249(2):393-9 [PMID: 21626287]
  34. J Lab Clin Med. 1963 May;61:882-8 [PMID: 13967893]
  35. Plants (Basel). 2021 Sep 28;10(10): [PMID: 34685853]
  36. Int J Mol Sci. 2016 Jun 23;17(7): [PMID: 27347928]
  37. Saudi J Biol Sci. 2016 Jan;23(1):39-47 [PMID: 26858537]
  38. Plant Biol (Stuttg). 2007 Sep;9(5):565-72 [PMID: 17853356]
  39. Bioorg Med Chem Lett. 2001 Jul 9;11(13):1699-701 [PMID: 11425541]
  40. Physiol Mol Biol Plants. 2020 Nov;26(11):2209-2223 [PMID: 33268924]
  41. Plant Physiol. 1992 Nov;100(3):1547-53 [PMID: 16653156]
  42. Funct Plant Biol. 2007 Jun;34(5):449-456 [PMID: 32689372]
  43. New Phytol. 2015 Nov;208(3):668-73 [PMID: 26108441]
  44. Int J Biol Macromol. 2020 Feb 15;145:108-123 [PMID: 31870871]
  45. BMC Plant Biol. 2022 Mar 26;22(1):148 [PMID: 35346042]

Grants

  1. RSPD2023R751/King Saud University

Word Cloud

Created with Highcharts 10.0.0stressCsNPscontentplantschitosangrownSalinityyieldeffectsCspigmentfractionsantioxidantLsaltsignificantlytraitsnanoparticlesmitigateprolinehydrogenperoxidelipidperoxidationelectrolyteleakagesystemusedcarbohydrateChitosancancausenegativeimpactsphysiologicalbiochemicalconsequentlyreductionproductivitycropsThereforecurrentstudyaimedinvestigatesalinityie2550100200mMNaClimprovecarbohydratesionsclay-sandysoilMethacrylicacidsynthesizeaveragesize40±2nmnegativelyaffectedHoweverapplicationeitherimprovedtreatmentsreducedpositiveshownbeneficialappliedexogenouslycontextconcludedsalinesoilsNanoparticlesDifferentiallyAlleviateStressPlantsPhaseolusvulgarisabiotic

Similar Articles

Cited By