Flight toward Sustainability in Poultry Nutrition with Black Soldier Fly Larvae.

Md Salahuddin, Ahmed A A Abdel-Wareth, Kohzy Hiramatsu, Jeffery K Tomberlin, Daylan Luza, Jayant Lohakare
Author Information
  1. Md Salahuddin: Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA. ORCID
  2. Ahmed A A Abdel-Wareth: Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA. ORCID
  3. Kohzy Hiramatsu: Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano 399-4598, Japan.
  4. Jeffery K Tomberlin: Center for Environmental Sustainability through Insect Farming, Texas A&M AgriLife, College Station, TX 77843, USA. ORCID
  5. Daylan Luza: Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA.
  6. Jayant Lohakare: Poultry Center, Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA. ORCID

Abstract

Black soldier fly larvae (BSFL), (L.) (Diptera: Stratiomyidae), have emerged as a promising feed ingredient in broiler chicken diets, known for their high protein content, nutritional richness, and environmental sustainability. This review examines the effects of integrating BSFL into broiler feeds, focusing on aspects such as growth performance, nutrient digestibility, physiological responses, and immune health. The ability of BSFL to transform waste into valuable biomass rich in proteins and lipids underscores their efficiency and ecological benefits. Protein levels in BSFL can range from 32% to 53%, varying with growth stage and diet, offering a robust source of amino acids essential for muscle development and growth in broilers. While the chitin in BSFL poses questions regarding digestibility, the overall impact on nutrient utilization is generally favorable. The inclusion of BSFL in diets has been shown to enhance growth rates, feed efficiency, and carcass quality in broilers, with the larvae's balanced amino acid profile being particularly advantageous for muscle development. BSFL may also support gut health and immunity in broilers due to its bioactive components, potentially influencing the gut's microbial composition and enhancing nutrient absorption and overall health. Moreover, the capacity of BSFL to efficiently convert organic waste into protein highlights their role as an environmentally sustainable protein source for broiler nutrition. Nonetheless, further research is necessary to fully understand the long-term effects of BSFL, ideal inclusion rates, and the impact of varying larval diets and rearing conditions. It is crucial for poultry producers to consult nutritionists and comply with local regulations when incorporating new feed ingredients like BSFL into poultry diets.

Keywords

References

  1. Poult Sci. 2022 Mar;101(3):101645 [PMID: 34998229]
  2. Animals (Basel). 2023 Apr 15;13(8): [PMID: 37106919]
  3. Animals (Basel). 2019 Sep 20;9(10): [PMID: 31546995]
  4. J Anim Sci. 2020 Jan 1;98(1): [PMID: 31781760]
  5. Poult Sci. 2023 Jan;102(1):102293 [PMID: 36442308]
  6. J Anim Sci Biotechnol. 2022 Feb 3;13(1):11 [PMID: 35109932]
  7. Poult Sci. 2023 Apr;102(4):102463 [PMID: 36758368]
  8. J Anim Physiol Anim Nutr (Berl). 2016 Dec;100(6):1104-1112 [PMID: 27005746]
  9. Front Microbiol. 2022 Nov 25;13:1044986 [PMID: 36504773]
  10. Animals (Basel). 2018 Oct 03;8(10): [PMID: 30282918]
  11. Waste Manag Res. 2009 Sep;27(6):603-10 [PMID: 19502252]
  12. Animals (Basel). 2020 Nov 15;10(11): [PMID: 33203187]
  13. Appl Microbiol Biotechnol. 2014 May;98(10):4301-10 [PMID: 24643736]
  14. Meat Sci. 2019 Jul;153:26-34 [PMID: 30861487]
  15. Animals (Basel). 2019 Apr 02;9(4): [PMID: 30986996]
  16. Animal. 2018 Oct;12(10):2032-2039 [PMID: 29343316]
  17. Br J Nutr. 1994 Aug;72(2):277-88 [PMID: 7947645]
  18. Animals (Basel). 2022 May 10;12(10): [PMID: 35625071]
  19. Insects. 2023 Sep 21;14(9): [PMID: 37754744]
  20. Neotrop Entomol. 2020 Apr;49(2):151-162 [PMID: 31701478]
  21. J Anim Sci Biotechnol. 2019 Feb 19;10:12 [PMID: 30820321]
  22. Front Insect Sci. 2022 Sep 05;2:933571 [PMID: 38468810]
  23. PLoS One. 2015 Dec 23;10(12):e0144601 [PMID: 26699129]
  24. Insects. 2022 Sep 13;13(9): [PMID: 36135532]
  25. Res Vet Sci. 2018 Apr;117:209-215 [PMID: 29304440]
  26. Insects. 2023 Mar 08;14(3): [PMID: 36975951]
  27. J Sci Food Agric. 2020 Feb;100(3):1038-1047 [PMID: 31650558]
  28. Animals (Basel). 2023 Aug 30;13(17): [PMID: 37685023]
  29. Forensic Sci Int. 2011 Mar 20;206(1-3):e76-8 [PMID: 21145189]
  30. J Anim Sci Biotechnol. 2022 May 5;13(1):31 [PMID: 35509031]
  31. Animals (Basel). 2020 Dec 30;11(1): [PMID: 33396850]
  32. J Vet Med Sci. 2018 May 18;80(5):736-740 [PMID: 29657236]
  33. J Econ Entomol. 2018 Aug 3;111(4):1966-1973 [PMID: 29757415]
  34. J Anim Sci Biotechnol. 2021 Apr 19;12(1):51 [PMID: 33866972]
  35. J Anim Sci Biotechnol. 2018 Aug 13;9:53 [PMID: 30123501]
  36. J Environ Biol. 2009 Jul;30(4):609-14 [PMID: 20120505]
  37. J Anim Sci Biotechnol. 2018 Jul 09;9:49 [PMID: 30002825]
  38. Animals (Basel). 2022 Jan 22;12(3): [PMID: 35158597]
  39. PeerJ. 2023 Sep 19;11:e15857 [PMID: 37744229]
  40. Anim Health Res Rev. 2018 Jun;19(1):46-52 [PMID: 29704909]
  41. Poult Sci. 2020 Jun;99(6):3133-3143 [PMID: 32475450]
  42. Front Microbiol. 2023 Jan 10;13:1095025 [PMID: 36704554]
  43. J Vet Res. 2023 Jun 16;67(2):197-207 [PMID: 38143822]
  44. Animals (Basel). 2023 Jul 31;13(15): [PMID: 37570281]
  45. Animals (Basel). 2018 Oct 23;8(11): [PMID: 30360513]
  46. Animals (Basel). 2021 Sep 17;11(9): [PMID: 34573682]
  47. Animal. 2018 Aug;12(8):1555-1563 [PMID: 29198231]
  48. Waste Manag Res. 2023 Jan;41(1):81-97 [PMID: 35730793]
  49. BMC Biol. 2021 May 5;19(1):94 [PMID: 33952283]
  50. Front Vet Sci. 2020 Jun 17;7:343 [PMID: 32626729]
  51. Anim Front. 2023 Aug 14;13(4):8-15 [PMID: 37583804]
  52. Animals (Basel). 2023 Jul 08;13(14): [PMID: 37508022]
  53. Anim Nutr. 2021 Sep;7(3):695-706 [PMID: 34466674]
  54. Animals (Basel). 2021 Apr 13;11(4): [PMID: 33924633]
  55. Environ Entomol. 2015 Apr;44(2):406-10 [PMID: 26313195]
  56. PLoS One. 2017 Aug 24;12(8):e0183188 [PMID: 28837591]
  57. Animal. 2019 Oct;13(10):2397-2405 [PMID: 31062675]
  58. Foods. 2021 Feb 02;10(2): [PMID: 33540634]
  59. Front Vet Sci. 2023 Nov 28;10:1298587 [PMID: 38089709]
  60. J Anim Sci Biotechnol. 2017 Jun 1;8:51 [PMID: 28603614]
  61. Nat Food. 2021 Jul;2(7):494-501 [PMID: 37117684]
  62. Sci Rep. 2020 Nov 10;10(1):19448 [PMID: 33173088]
  63. Animals (Basel). 2023 Mar 23;13(7): [PMID: 37048393]
  64. J Econ Entomol. 2017 Aug 1;110(4):1501-1507 [PMID: 28525620]
  65. BMC Vet Res. 2023 Jan 11;19(1):7 [PMID: 36631776]
  66. Poult Sci. 2023 Oct;102(10):102984 [PMID: 37586189]
  67. Saudi J Biol Sci. 2022 Feb;29(2):809-815 [PMID: 35197748]
  68. J Poult Sci. 2021 Oct 25;58(4):222-229 [PMID: 34899017]
  69. Vopr Pitan. 2021;90(5):49-58 [PMID: 34719142]
  70. Trop Anim Health Prod. 2019 Nov;51(8):2219-2225 [PMID: 31134556]
  71. Sci Rep. 2019 Jul 12;9(1):10110 [PMID: 31300713]
  72. Transl Anim Sci. 2020 Jun 29;4(3):txaa104 [PMID: 32734146]
  73. Poult Sci. 2019 Oct 1;98(10):4745-4754 [PMID: 31002110]
  74. Poult Sci. 2021 Feb;100(2):420-430 [PMID: 33518093]
  75. Anim Microbiome. 2022 Jan 15;4(1):9 [PMID: 35033208]
  76. Biodivers Data J. 2022 Oct 17;10:e90146 [PMID: 36761564]
  77. J Anim Physiol Anim Nutr (Berl). 2021 Oct;105 Suppl 1:10-18 [PMID: 34402110]
  78. Animals (Basel). 2022 Aug 18;12(16): [PMID: 36009708]
  79. Foods. 2017 Oct 18;6(10): [PMID: 29057841]
  80. Transl Anim Sci. 2022 Jun 22;6(3):txac084 [PMID: 35854966]
  81. Insects. 2023 Feb 17;14(2): [PMID: 36835773]
  82. J Anim Physiol Anim Nutr (Berl). 2015 Feb;99(1):1-12 [PMID: 25041091]
  83. Anim Front. 2023 Aug 14;13(4):91-101 [PMID: 37583802]
  84. Poult Sci. 2022 Dec;101(12):102202 [PMID: 36257076]
  85. Physiol Behav. 2022 Dec 1;257:113999 [PMID: 36270510]
  86. Front Vet Sci. 2022 Dec 14;9:1064017 [PMID: 36590795]
  87. J Sci Food Agric. 2017 Jun;97(8):2594-2600 [PMID: 27734508]
  88. PLoS One. 2022 Feb 25;17(2):e0263924 [PMID: 35213590]
  89. Animals (Basel). 2019 Mar 02;9(3): [PMID: 30832335]
  90. Microorganisms. 2022 Jul 05;10(7): [PMID: 35889070]
  91. J Sci Food Agric. 2020 Aug 30;100(11):4292-4302 [PMID: 32378214]
  92. Animal. 2016 Dec;10(12):1923-1930 [PMID: 27339654]
  93. Res Vet Sci. 2017 Dec;115:183-188 [PMID: 28472736]
  94. Front Immunol. 2021 Oct 04;12:745849 [PMID: 34671361]
  95. Animals (Basel). 2021 Jun 21;11(6): [PMID: 34205603]
  96. Insects. 2017 May 31;8(2): [PMID: 28561763]
  97. J Exp Biol. 2003 Dec;206(Pt 24):4393-412 [PMID: 14610026]
  98. Insects. 2023 May 02;14(5): [PMID: 37233062]
  99. Waste Manag. 2020 Feb 1;102:40-47 [PMID: 31655329]
  100. J Sci Food Agric. 2019 Jan 30;99(2):893-903 [PMID: 30009465]
  101. Front Vet Sci. 2020 Nov 27;7:585843 [PMID: 33330711]
  102. J Anim Sci Biotechnol. 2020 Feb 03;11:11 [PMID: 32025297]
  103. Poult Sci. 2021 Apr;100(4):101034 [PMID: 33662662]
  104. Mol Nutr Food Res. 2013 May;57(5):802-23 [PMID: 23471778]
  105. Antioxidants (Basel). 2022 Sep 13;11(9): [PMID: 36139872]
  106. Anim Biosci. 2022 Dec;35(12):1881-1891 [PMID: 35760407]
  107. Vet Sci. 2023 Oct 09;10(10): [PMID: 37888564]
  108. Waste Manag. 2011 Jun;31(6):1316-20 [PMID: 21367596]
  109. Poult Sci. 2007 Sep;86(9):1960-71 [PMID: 17704385]
  110. Animals (Basel). 2019 Mar 19;9(3): [PMID: 30893879]

Grants

  1. 2023-38821-39977/United States Department of Agriculture

Word Cloud

Created with Highcharts 10.0.0BSFLdietsgrowthbroilersfeedbroilerproteinnutrienthealthBlacksoldierflylarvaesustainabilityeffectsdigestibilitywasteefficiencyvaryingsourceaminomuscledevelopmentoverallimpactinclusionratespoultryLDiptera:StratiomyidaeemergedpromisingingredientchickenknownhighcontentnutritionalrichnessenvironmentalreviewexaminesintegratingfeedsfocusingaspectsperformancephysiologicalresponsesimmuneabilitytransformvaluablebiomassrichproteinslipidsunderscoresecologicalbenefitsProteinlevelscanrange32%53%stagedietofferingrobustacidsessentialchitinposesquestionsregardingutilizationgenerallyfavorableshownenhancecarcassqualitylarvae'sbalancedacidprofileparticularlyadvantageousmayalsosupportgutimmunityduebioactivecomponentspotentiallyinfluencinggut'smicrobialcompositionenhancingabsorptionMoreovercapacityefficientlyconvertorganichighlightsroleenvironmentallysustainablenutritionNonethelessresearchnecessaryfullyunderstandlong-termideallarvalrearingconditionscrucialproducersconsultnutritionistscomplylocalregulationsincorporatingnewingredientslikeFlighttowardSustainabilityPoultryNutritionSoldierFlyLarvaeblackproductivity

Similar Articles

Cited By