Physicochemical Properties of Nanoliposomes Encapsulating Grape Seed Tannins Formed with Ultrasound Cycles.

Angela Monasterio, Fernando A Osorio
Author Information
  1. Angela Monasterio: Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile, USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile.
  2. Fernando A Osorio: Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile, USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile. ORCID

Abstract

Grape seeds are an excellent source of flavonoids and tannins with powerful antioxidant properties. However, the astringency of tannins limits their direct incorporation into food. To overcome this challenge, we investigated the encapsulation of grape seed tannins within nanoliposomes formed by ultrasound cycling. We characterized the nanoliposomes' physicochemical properties, including encapsulation efficiency, antioxidant activity, stability, microstructure, and rheological properties. Our findings reveal that the nanoliposomes exhibited excellent stability under refrigerated conditions for up to 90 days with a mean particle size of 228 ± 26 nm, a polydispersity index of 0.598 ± 0.087, and a zeta potential of -41.6 ± 1.30 mV, maintaining a spherical multilamellar microstructure. Moreover, they displayed high antioxidant activity, with encapsulation efficiencies of 79% for epicatechin and 90% for catechin. This innovative approach demonstrates the potential of using ultrasound-assisted nanoliposome encapsulation to directly incorporate grape seed tannins into food matrices, providing a sustainable and efficient method for enhancing their bioavailability and functionality.

Keywords

References

  1. Foods. 2021 Feb 25;10(3): [PMID: 33668998]
  2. J Texture Stud. 2020 Aug;51(4):585-592 [PMID: 32110834]
  3. Molecules. 2022 Oct 18;27(20): [PMID: 36296630]
  4. J Agric Food Chem. 2019 Aug 28;67(34):9543-9550 [PMID: 31379164]
  5. J Dairy Sci. 2019 Nov;102(11):9639-9650 [PMID: 31477286]
  6. J Pharm Biomed Anal. 2010 Jan 20;51(2):490-5 [PMID: 19553056]
  7. Adv Colloid Interface Sci. 2023 Jan;311:102833 [PMID: 36610103]
  8. Adv Colloid Interface Sci. 2022 Nov;309:102757 [PMID: 36152374]
  9. Plant Signal Behav. 2008 Aug;3(8):609-11 [PMID: 19704814]
  10. Adv Pharm Bull. 2023 Jan;13(1):48-68 [PMID: 36721823]
  11. Polymers (Basel). 2023 Sep 15;15(18): [PMID: 37765628]
  12. Food Chem. 2019 Mar 1;275:41-49 [PMID: 30724215]
  13. Front Endocrinol (Lausanne). 2021 Feb 01;11:601627 [PMID: 33597924]
  14. J Sci Food Agric. 2022 Mar 30;102(5):1771-1781 [PMID: 34796497]
  15. Food Chem. 2022 Apr 16;374:131766 [PMID: 34883425]
  16. Antioxidants (Basel). 2022 Nov 13;11(11): [PMID: 36421422]
  17. Pharmaceutics. 2011 Aug 12;3(3):497-509 [PMID: 24310593]
  18. Biochim Biophys Acta. 2013 Apr;1828(4):1192-7 [PMID: 23313452]
  19. Drug Dev Res. 2023 Sep;84(6):1096-1113 [PMID: 37386756]
  20. Carbohydr Polym. 2020 Mar 1;231:115702 [PMID: 31888827]
  21. Compr Rev Food Sci Food Saf. 2021 Mar;20(2):1280-1306 [PMID: 33665991]
  22. Compr Rev Food Sci Food Saf. 2021 Jan;20(1):1036-1074 [PMID: 33340236]
  23. Food Res Int. 2017 Oct;100(Pt 1):541-550 [PMID: 28873719]
  24. Crit Rev Food Sci Nutr. 2023;63(18):3005-3018 [PMID: 35549567]
  25. Mol Pharm. 2022 Mar 7;19(3):788-797 [PMID: 35170971]
  26. Biochim Biophys Acta Bioenerg. 2023 Apr 1;1864(2):148949 [PMID: 36493857]
  27. Crit Rev Food Sci Nutr. 2023 Aug 10;:1-25 [PMID: 37585699]
  28. Molecules. 2020 Jun 02;25(11): [PMID: 32498458]
  29. Food Res Int. 2020 Apr;130:108967 [PMID: 32156401]
  30. Food Res Int. 2019 May;119:665-674 [PMID: 30884701]
  31. Foods. 2021 Apr 28;10(5): [PMID: 33924950]
  32. Adv Drug Deliv Rev. 2024 Feb;205:115176 [PMID: 38199256]
  33. Front Nutr. 2023 Jan 04;9:1043095 [PMID: 36687727]
  34. Molecules. 2022 Feb 17;27(4): [PMID: 35209151]
  35. Biochim Biophys Acta Biomembr. 2022 Feb 1;1864(1):183778 [PMID: 34537215]
  36. Food Res Int. 2022 Jul;157:111203 [PMID: 35761525]
  37. Molecules. 2019 Jun 03;24(11): [PMID: 31163608]
  38. Pharmaceutics. 2011 Nov 04;3(4):793-829 [PMID: 24309309]
  39. Nanomaterials (Basel). 2022 Sep 02;12(17): [PMID: 36080088]
  40. Adv Mater. 2020 Apr;32(16):e1907619 [PMID: 32108394]
  41. Food Sci Nutr. 2023 Jan 13;11(4):1657-1670 [PMID: 37051367]
  42. BMC Complement Med Ther. 2023 May 6;23(1):150 [PMID: 37149589]
  43. J Food Sci Technol. 2020 Oct;57(10):3545-3555 [PMID: 32903987]

Grants

  1. ANID- FONDECYT CHILE Regular Project 1200624/Agencia Nacional de Investigación y Desarrollo
  2. National Doctoral Scholarship 21200051-2020/ANID CHILE

Word Cloud

Created with Highcharts 10.0.0tanninsencapsulationantioxidantpropertiesnanoliposomes±Grapeexcellentfoodgrapeseedultrasoundactivitystabilitymicrostructure0potentialseedssourceflavonoidspowerfulHoweverastringencylimitsdirectincorporationovercomechallengeinvestigatedwithinformedcyclingcharacterizednanoliposomes'physicochemicalincludingefficiencyrheologicalfindingsrevealexhibitedrefrigeratedconditions90daysmeanparticlesize22826nmpolydispersityindex598087zeta-416130mVmaintainingsphericalmultilamellarMoreoverdisplayedhighefficiencies79%epicatechin90%catechininnovativeapproachdemonstratesusingultrasound-assistednanoliposomedirectlyincorporatematricesprovidingsustainableefficientmethodenhancingbioavailabilityfunctionalityPhysicochemicalPropertiesNanoliposomesEncapsulatingSeedTanninsFormedUltrasoundCyclesantioxidants

Similar Articles

Cited By