DNA and RNA Stability of Marine Microalgae in Cold-Stored Sediments and Its Implications in Metabarcoding Analyses.

Zhaoyang Chai, Yuyang Liu, Siyang Jia, Fengting Li, Zhangxi Hu, Yunyan Deng, Caixia Yue, Ying-Zhong Tang
Author Information
  1. Zhaoyang Chai: CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. ORCID
  2. Yuyang Liu: CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. ORCID
  3. Siyang Jia: Yellow Sea and East Sea Buoy Observation Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
  4. Fengting Li: CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
  5. Zhangxi Hu: CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. ORCID
  6. Yunyan Deng: CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. ORCID
  7. Caixia Yue: CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
  8. Ying-Zhong Tang: CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. ORCID

Abstract

The ever-increasing applications of metabarcoding analyses for environmental samples demand a well-designed assessment of the stability of DNA and RNA contained in cells that are deposited or buried in marine sediments. We thus conducted a qPCR quantification of the DNA and RNA in the vegetative cells of three microalgae entrapped in facsimile marine sediments and found that >90% of DNA and up to 99% of RNA for all microalgal species were degraded within 60 days at 4 °C. A further examination of the potential interference of the relic DNA of the vegetative cells with resting cyst detection in sediments was performed via a metabarcoding analysis in artificial marine sediments spiked with the vegetative cells of two Kareniaceae dinoflagellates and the resting cysts of another three dinoflagellates. The results demonstrated a dramatic decrease in the relative abundances of the two Kareniaceae dinoflagellates in 120 days, while those of the three resting cysts increased dramatically. Together, our results suggest that a positive detection of microalgae via metabarcoding analysis in DNA or RNA extracted from marine sediments strongly indicates the presence of intact or viable cysts or spores due to the rapid decay of relic DNA/RNA. This study provides a solid basis for the data interpretation of metabarcoding surveys, particularly in resting cyst detection.

Keywords

References

  1. Microorganisms. 2014 Jan 03;2(1):11-32 [PMID: 27694774]
  2. Appl Environ Microbiol. 2007 Dec;73(24):8028-31 [PMID: 17933922]
  3. Ann Rev Mar Sci. 2012;4:143-76 [PMID: 22457972]
  4. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  5. Environ Microbiol. 2010 Dec;12(12):3137-49 [PMID: 20629704]
  6. J Periodontal Res. 2014 Feb;49(1):20-8 [PMID: 23581569]
  7. Environ Microbiol. 2018 Dec;20(12):4526-4542 [PMID: 30198168]
  8. Science. 2015 May 22;348(6237):1261605 [PMID: 25999516]
  9. Nature. 2005 Feb 24;433(7028):861-4 [PMID: 15729341]
  10. Front Microbiol. 2022 Aug 31;13:999886 [PMID: 36118226]
  11. Environ Microbiol. 2006 Dec;8(12):2150-61 [PMID: 17107556]
  12. Harmful Algae. 2021 Jul;107:102050 [PMID: 34456016]
  13. Microb Ecol. 1999 Nov;38(4):348-357 [PMID: 10758181]
  14. Protist. 2010 Jul;161(3):342-52 [PMID: 20153693]
  15. Mar Pollut Bull. 2023 Feb;187:114567 [PMID: 36640495]
  16. Environ Biosafety Res. 2007 Jan-Jun;6(1-2):37-53 [PMID: 17961479]
  17. FEMS Microbiol Ecol. 2011 Jul;77(1):146-53 [PMID: 21428987]
  18. Int J Environ Res Public Health. 2022 Apr 07;19(8): [PMID: 35457312]
  19. Nat Rev Microbiol. 2005 Jun;3(6):470-8 [PMID: 15931165]
  20. Appl Environ Microbiol. 2007 Aug;73(16):5111-7 [PMID: 17586667]
  21. Curr Biol. 2021 Jun 21;31(12):2682-2689.e7 [PMID: 33887182]
  22. Microorganisms. 2019 Aug 09;7(8): [PMID: 31405065]
  23. Harmful Algae. 2022 Oct;118:102312 [PMID: 36195426]
  24. ISME J. 2012 Jan;6(1):195-212 [PMID: 21697960]
  25. Appl Environ Microbiol. 2005 Jan;71(1):46-50 [PMID: 15640168]
  26. Mol Ecol. 2018 Feb;27(4):1081-1093 [PMID: 29368406]
  27. Appl Environ Microbiol. 2013 Jan;79(1):177-84 [PMID: 23087033]
  28. J Microbiol Methods. 2012 Nov;91(2):276-89 [PMID: 22940102]
  29. Ecol Evol. 2021 Oct 22;11(22):15766-15779 [PMID: 34824788]
  30. Harmful Algae. 2017 Sep;68:40-51 [PMID: 28962989]
  31. Science. 2005 Sep 30;309(5744):2179 [PMID: 16195451]
  32. Nat Microbiol. 2021 Jul;6(7):885-898 [PMID: 34127845]
  33. Nat Microbiol. 2016 Dec 19;2:16242 [PMID: 27991881]
  34. mBio. 2018 Jun 19;9(3): [PMID: 29921664]
  35. Appl Environ Microbiol. 2001 Jan;67(1):172-8 [PMID: 11133442]
  36. ISME J. 2011 Jan;5(1):92-106 [PMID: 20613788]
  37. Appl Environ Microbiol. 2013 Feb;79(4):1385-92 [PMID: 23263952]
  38. Harmful Algae. 2021 Nov;109:102108 [PMID: 34815026]
  39. Mol Oral Microbiol. 2011 Aug;26(4):253-61 [PMID: 21729246]
  40. Harmful Algae. 2021 Jun;106:102063 [PMID: 34154784]
  41. Front Microbiol. 2018 Dec 04;9:2969 [PMID: 30564217]
  42. Biodivers Data J. 2020 Aug 18;8:e55172 [PMID: 32903988]
  43. J Microbiol Methods. 2011 May;85(2):164-9 [PMID: 21324348]
  44. ISME J. 2013 Nov;7(11):2061-8 [PMID: 23823491]
  45. Environ Microbiol. 2011 May;13(5):1138-52 [PMID: 21176054]
  46. PLoS One. 2014 Feb 28;9(2):e90234 [PMID: 24587293]
  47. J Endod. 2016 Jul;42(7):1089-92 [PMID: 27179593]
  48. FEMS Microbiol Ecol. 2013 Apr;84(1):47-59 [PMID: 23106413]
  49. Microbiol Insights. 2014 Sep 04;7:15-24 [PMID: 25288885]
  50. Ecol Evol. 2017 Jul 28;7(17):6918-6926 [PMID: 28904771]
  51. Appl Environ Microbiol. 1999 Dec;65(12):5409-20 [PMID: 10583997]
  52. Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5881-6 [PMID: 20231463]
  53. J Protozool. 1976 Feb;23(1):13-28 [PMID: 944775]
  54. Appl Environ Microbiol. 2005 Jun;71(6):3235-47 [PMID: 15933026]
  55. Environ Microbiome. 2023 Dec 8;18(1):86 [PMID: 38062479]
  56. J Phycol. 2015 Apr;51(2):298-309 [PMID: 26986525]
  57. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]

Grants

  1. KFJ-SW-YW047/Key Research Infrastructures in CAS Field Stations of Chinese Academy of Science
  2. LSKJ202203700/Science and Technology Innovation Project of Laoshan Laboratory
  3. 2022YFC3105201/National Key Research and Development Program of China
  4. 41476142/National Science Foundation of China
  5. 61533011/National Science Foundation of China

MeSH Term

Microalgae
DNA
Dinoflagellida
DNA Barcoding, Taxonomic
RNA
RNA Stability
Geologic Sediments

Chemicals

DNA
RNA

Word Cloud

Created with Highcharts 10.0.0DNAsedimentsmetabarcodingRNArestingcellsmarinecystsvegetativethreemicroalgaedetectiondinoflagellatesstabilitydaysreliccystviaanalysistwoKareniaceaeresultsDNA/RNAever-increasingapplicationsanalysesenvironmentalsamplesdemandwell-designedassessmentcontaineddepositedburiedthusconductedqPCRquantificationentrappedfacsimilefound>90%99%microalgalspeciesdegradedwithin604°Cexaminationpotentialinterferenceperformedartificialspikedanotherdemonstrateddramaticdecreaserelativeabundances120increaseddramaticallyTogethersuggestpositiveextractedstronglyindicatespresenceintactviablesporesduerapiddecaystudyprovidessolidbasisdatainterpretationsurveysparticularlyStabilityMarineMicroalgaeCold-StoredSedimentsImplicationsMetabarcodingAnalysesquantitativereal-timePCR

Similar Articles

Cited By