The Feasibility and Accuracy of Holographic Navigation with Laser Crosshair Simulator Registration on a Mixed-Reality Display.

Ziyu Qi, Haitao Jin, Qun Wang, Zhichao Gan, Ruochu Xiong, Shiyu Zhang, Minghang Liu, Jingyue Wang, Xinyu Ding, Xiaolei Chen, Jiashu Zhang, Christopher Nimsky, Miriam H A Bopp
Author Information
  1. Ziyu Qi: Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany. ORCID
  2. Haitao Jin: Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. ORCID
  3. Qun Wang: Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. ORCID
  4. Zhichao Gan: Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. ORCID
  5. Ruochu Xiong: Department of Neurosurgery, Division of Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa 920-8641, Japan. ORCID
  6. Shiyu Zhang: Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. ORCID
  7. Minghang Liu: Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. ORCID
  8. Jingyue Wang: Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. ORCID
  9. Xinyu Ding: Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. ORCID
  10. Xiaolei Chen: Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. ORCID
  11. Jiashu Zhang: Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. ORCID
  12. Christopher Nimsky: Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany. ORCID
  13. Miriam H A Bopp: Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany. ORCID

Abstract

Addressing conventional neurosurgical navigation systems' high costs and complexity, this study explores the feasibility and accuracy of a simplified, cost-effective mixed reality navigation (MRN) system based on a laser crosshair simulator (LCS). A new automatic registration method was developed, featuring coplanar laser emitters and a recognizable target pattern. The workflow was integrated into Microsoft's HoloLens-2 for practical application. The study assessed the system's precision by utilizing life-sized 3D-printed head phantoms based on computed tomography (CT) or magnetic resonance imaging (MRI) data from 19 patients (female/male: 7/12, average age: 54.4 ± 18.5 years) with intracranial lesions. Six to seven CT/MRI-visible scalp markers were used as reference points per case. The LCS-MRN's accuracy was evaluated through landmark-based and lesion-based analyses, using metrics such as target registration error (TRE) and Dice similarity coefficient (DSC). The system demonstrated immersive capabilities for observing intracranial structures across all cases. Analysis of 124 landmarks showed a TRE of 3.0 ± 0.5 mm, consistent across various surgical positions. The DSC of 0.83 ± 0.12 correlated significantly with lesion volume (Spearman rho = 0.813, < 0.001). Therefore, the LCS-MRN system is a viable tool for neurosurgical planning, highlighting its low user dependency, cost-efficiency, and accuracy, with prospects for future clinical application enhancements.

Keywords

References

  1. J Clin Neurosci. 2014 Nov;21(11):1976-80 [PMID: 24957630]
  2. Diagnostics (Basel). 2020 Sep 30;10(10): [PMID: 33007929]
  3. Acta Neurochir (Wien). 2022 Apr;164(4):1069-1078 [PMID: 34448914]
  4. J Neurosurg Spine. 2013 Oct;19(4):492-501 [PMID: 23952323]
  5. Sci Rep. 2023 Feb 14;13(1):2644 [PMID: 36788314]
  6. Stereotact Funct Neurosurg. 2000;75(4):188-202 [PMID: 11910212]
  7. Front Neurosci. 2022 May 09;16:883584 [PMID: 35615280]
  8. Stereotact Funct Neurosurg. 2014;92(1):17-24 [PMID: 24216673]
  9. Otol Neurotol. 2018 Dec;39(10):e1137-e1142 [PMID: 30239435]
  10. JCO Clin Cancer Inform. 2020 Mar;4:299-309 [PMID: 32216636]
  11. Magn Reson Med. 2018 Nov;80(5):2017-2023 [PMID: 29603366]
  12. Cardiovasc Intervent Radiol. 2023 May;46(5):675-679 [PMID: 36658373]
  13. Neurosurg Rev. 2017 Oct;40(4):537-548 [PMID: 27154018]
  14. Brain Behav. 2021 May;11(5):e02085 [PMID: 33624945]
  15. Neurosurg Focus. 2021 Aug;51(2):E20 [PMID: 34333464]
  16. Acta Neurochir (Wien). 2013 May;155(5):943-7 [PMID: 23494133]
  17. Neurosurgery. 2008 Mar;62(3 Suppl 1):201-7; discussion 207-8 [PMID: 18424987]
  18. Neurosurgery. 2011 Feb;68(2):496-505 [PMID: 21135713]
  19. Med Image Anal. 2023 Apr;85:102757 [PMID: 36706637]
  20. Neurosurg Focus. 2021 Aug;51(2):E22 [PMID: 34333462]
  21. Sensors (Basel). 2022 Dec 07;22(24): [PMID: 36559961]
  22. Neurosurg Focus. 2021 Aug;51(2):E14 [PMID: 34333477]
  23. Neurosurg Focus. 2019 Dec 1;47(6):E11 [PMID: 31786552]
  24. World Neurosurg. 2021 Feb;146:179-188 [PMID: 33197631]
  25. J Neuroimaging. 2015 Nov-Dec;25(6):875-82 [PMID: 26259925]
  26. World Neurosurg. 2018 Oct;118:e422-e427 [PMID: 30257298]
  27. Neurosurg Focus. 2021 Aug;51(2):E3 [PMID: 34333466]
  28. Neurosurg Focus. 2024 Jan;56(1):E7 [PMID: 38163345]
  29. Int J Comput Assist Radiol Surg. 2019 Mar;14(3):525-535 [PMID: 29934792]
  30. Bioengineering (Basel). 2023 Nov 07;10(11): [PMID: 38002414]
  31. Int J Comput Assist Radiol Surg. 2019 Jul;14(7):1157-1165 [PMID: 30993519]
  32. J Digit Imaging. 2019 Dec;32(6):1008-1018 [PMID: 31485953]
  33. J Neurosurg. 2015 Jul;123(1):206-11 [PMID: 25748303]
  34. World Neurosurg. 2022 Nov;167:e1261-e1267 [PMID: 36089274]
  35. Neurosurgery. 2011 Mar;68(1 Suppl Operative):95-101; discussion 101-2 [PMID: 21206305]
  36. Oper Neurosurg (Hagerstown). 2019 Dec 1;17(6):588-593 [PMID: 31081883]
  37. J Neurosurg. 2021 Dec 17;:1-7 [PMID: 34920422]
  38. Neurosurg Focus. 2021 Jan;50(1):E16 [PMID: 33386016]
  39. Acta Neurochir (Wien). 2021 Apr;163(4):879-884 [PMID: 33515122]
  40. Radiol Phys Technol. 2009 Jul;2(2):120-5 [PMID: 20821109]
  41. Oper Neurosurg (Hagerstown). 2015 Dec 1;11(4):504-511 [PMID: 29506163]
  42. J Neurosurg. 2014 Jun;120(6):1477-83 [PMID: 24460486]
  43. Sensors (Basel). 2019 Aug 15;19(16): [PMID: 31443237]
  44. Zhonghua Wai Ke Za Zhi. 2022 Dec 1;60(12):1100-1107 [PMID: 36480878]
  45. Healthc Technol Lett. 2018 Oct 4;5(5):221-225 [PMID: 30464854]
  46. J Appl Clin Med Phys. 2022 Mar;23(3):e13516 [PMID: 34985188]
  47. BMC Anesthesiol. 2023 May 20;23(1):171 [PMID: 37210521]
  48. J Neurosurg. 2019 Jul 19;:1-10 [PMID: 31323639]
  49. World Neurosurg. 2019 Dec;132:114-117 [PMID: 31476467]
  50. Front Neurorobot. 2021 May 14;15:636772 [PMID: 34054454]
  51. Healthcare (Basel). 2022 Sep 21;10(10): [PMID: 36292263]
  52. Minim Invasive Neurosurg. 1997 Sep;40(3):110-5 [PMID: 9359091]
  53. Neurosurgery. 2013 May;72(5):796-807 [PMID: 23334280]
  54. J Neurosurg. 2018 Oct 1;:1-8 [PMID: 30485188]

MeSH Term

Humans
Male
Female
Adult
Middle Aged
Aged
Augmented Reality
Neuronavigation
Feasibility Studies
Tomography, X-Ray Computed
Lasers
Surgery, Computer-Assisted
Imaging, Three-Dimensional

Word Cloud

Created with Highcharts 10.0.00registrationneurosurgicalaccuracyrealitysystemlasertarget±intracranialnavigationstudymixedbasedcrosshairsimulatorautomaticapplicationhead5errorTREsimilaritycoefficientDSCacrosslesionplanningAddressingconventionalsystems'highcostscomplexityexploresfeasibilitysimplifiedcost-effectiveMRNLCSnewmethoddevelopedfeaturingcoplanaremittersrecognizablepatternworkflowintegratedMicrosoft'sHoloLens-2practicalassessedsystem'sprecisionutilizinglife-sized3D-printedphantomscomputedtomographyCTmagneticresonanceimagingMRIdata19patientsfemale/male:7/12averageage:54418yearslesionsSixsevenCT/MRI-visiblescalpmarkersusedreferencepointspercaseLCS-MRN'sevaluatedlandmark-basedlesion-basedanalysesusingmetricsDicedemonstratedimmersivecapabilitiesobservingstructurescasesAnalysis124landmarksshowed3mmconsistentvarioussurgicalpositions8312correlatedsignificantlyvolumeSpearmanrho=813<001ThereforeLCS-MRNviabletoolhighlightinglowuserdependencycost-efficiencyprospectsfutureclinicalenhancementsFeasibilityAccuracyHolographicNavigationLaserCrosshairSimulatorRegistrationMixed-RealityDisplayaugmenteddicephantomneuronavigation

Similar Articles

Cited By