Molecular dynamics simulation study of water structure and dynamics on the gold electrode surface with adsorbed 4-mercaptobenzonitrile.

Kijeong Kwac, Nan Yang, Matthew J Ryan, Martin T Zanni, Minhaeng Cho
Author Information
  1. Kijeong Kwac: Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea. ORCID
  2. Nan Yang: Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. ORCID
  3. Matthew J Ryan: Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. ORCID
  4. Martin T Zanni: Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. ORCID
  5. Minhaeng Cho: Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea. ORCID

Abstract

Understanding water dynamics at charged interfaces is of great importance in various fields, such as catalysis, biomedical processes, and solar cell materials. In this study, we implemented molecular dynamics simulations of a system of pure water interfaced with Au electrodes, on one side of which 4-mercaptobenzonitrile (4-MBN) molecules are adsorbed. We calculated time correlation functions of various dynamic quantities, such as the hydrogen bond status of the N atom of the adsorbed 4-MBN molecules, the rotational motion of the water OH bond, hydrogen bonds between 4-MBN and water, and hydrogen bonds between water molecules in the interface region. Using the Luzar-Chandler model, we analyzed the hydrogen bond dynamics between a 4-MBN and a water molecule. The dynamic quantities we calculated can be divided into two categories: those related to the collective behavior of interfacial water molecules and the H-bond interaction between a water molecule and the CN group of 4-MBN. We found that these two categories of dynamic quantities exhibit opposite trends in response to applied potentials on the Au electrode. We anticipate that the present work will help improve our understanding of the interfacial dynamics of water in various electrolyte systems.

References

  1. Science. 2014 Nov 14;346(6211):831-4 [PMID: 25342657]
  2. J Phys Chem A. 2018 Mar 8;122(9):2401-2410 [PMID: 29432016]
  3. ACS Cent Sci. 2020 Feb 26;6(2):304-311 [PMID: 32123749]
  4. Langmuir. 2006 Apr 25;22(9):4116-24 [PMID: 16618153]
  5. Chem Rev. 2017 Aug 23;117(16):10665-10693 [PMID: 28378588]
  6. Sci Adv. 2016 Mar 18;2(3):e1501602 [PMID: 27034988]
  7. Chem Rev. 1947 Dec;41(3):441-501 [PMID: 18895519]
  8. Phys Chem Chem Phys. 2020 May 21;22(19):10581-10591 [PMID: 32149294]
  9. Nature. 2005 Mar 10;434(7030):199-202 [PMID: 15758995]
  10. J Chem Phys. 2022 May 14;156(18):184101 [PMID: 35568564]
  11. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):437-42 [PMID: 18182497]
  12. ACS Phys Chem Au. 2023 Jan 04;3(1):119-129 [PMID: 36718265]
  13. J Am Chem Soc. 2008 Mar 26;130(12):3824-33 [PMID: 18321095]
  14. Annu Rev Phys Chem. 2011;62:395-416 [PMID: 21219140]
  15. J Comput Chem. 2004 Jul 15;25(9):1157-74 [PMID: 15116359]
  16. J Phys Chem B. 2018 Apr 12;122(14):3667-3679 [PMID: 29490138]
  17. Phys Rev Lett. 2000 Jul 24;85(4):768-71 [PMID: 10991394]
  18. Adv Protein Chem. 1991;41:37-172 [PMID: 2069077]
  19. Science. 2006 Feb 10;311(5762):832-5 [PMID: 16439623]
  20. J Phys Chem B. 2023 Mar 9;127(9):2083-2091 [PMID: 36821845]
  21. Proc Natl Acad Sci U S A. 2023 Dec 26;120(52):e2314998120 [PMID: 38127983]
  22. Chem Rev. 2017 Aug 23;117(16):10623-10664 [PMID: 28830147]
  23. J Phys Condens Matter. 2014 Jun 18;26(24):244102 [PMID: 24862873]
  24. Angew Chem Int Ed Engl. 2017 Apr 3;56(15):4211-4214 [PMID: 28300334]
  25. J Phys Chem B. 2022 Nov 3;126(43):8804-8812 [PMID: 36269165]
  26. J Chem Phys. 2008 Apr 7;128(13):134506 [PMID: 18397076]
  27. Science. 2003 Sep 19;301(5640):1698-702 [PMID: 14500975]
  28. J Chem Phys. 2007 May 28;126(20):204107 [PMID: 17552754]
  29. Nat Commun. 2022 Sep 10;13(1):5330 [PMID: 36088353]
  30. Acc Chem Res. 2009 Sep 15;42(9):1239-49 [PMID: 19585982]
  31. J Chem Phys. 2020 May 21;152(19):194103 [PMID: 33687235]
  32. Nat Rev Chem. 2021 Jul;5(7):466-485 [PMID: 37118441]
  33. Nat Chem. 2013 Nov;5(11):935-40 [PMID: 24153371]
  34. Chem Rev. 2004 Apr;104(4):1887-914 [PMID: 15080715]
  35. Biophys J. 1980 Oct;32(1):88-90 [PMID: 19431417]

Grants

  1. R01 GM135936/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0waterdynamics4-MBNmoleculeshydrogenvariousadsorbeddynamicquantitiesbondstudyAu4-mercaptobenzonitrilecalculatedbondsmoleculetwointerfacialelectrodeUnderstandingchargedinterfacesgreatimportancefieldscatalysisbiomedicalprocessessolarcellmaterialsimplementedmolecularsimulationssystempureinterfacedelectrodesonesidetimecorrelationfunctionsstatusNatomrotationalmotionOHinterfaceregionUsingLuzar-Chandlermodelanalyzedcandividedcategories:relatedcollectivebehaviorH-bondinteractionCNgroupfoundcategoriesexhibitoppositetrendsresponseappliedpotentialsanticipatepresentworkwillhelpimproveunderstandingelectrolytesystemsMolecularsimulationstructuregoldsurface

Similar Articles

Cited By