An overview of the mechanisms and potential roles of extracellular vesicles in septic shock.

Meiling Cao, Mingyue Shi, Boru Zhou, Hongkun Jiang
Author Information
  1. Meiling Cao: Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
  2. Mingyue Shi: Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China.
  3. Boru Zhou: Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China.
  4. Hongkun Jiang: Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China.

Abstract

Septic shock, a subset of sepsis, is a fatal condition associated with high morbidity and mortality. However, the pathophysiology of septic shock is not fully understood. Moreover, the diagnostic markers employed for identifying septic shock lack optimal sensitivity and specificity. Current treatment protocols for septic shock have not been effective in lowering the mortality rate of patients. Most cells exhibit the capability to release extracellular vesicles (EVs), nanoscale vesicles that play a vital role in intercellular communication. In recent years, researchers have investigated the potential role of EVs in the pathogenesis, diagnosis, and treatment of different diseases, such as oncological, neurological, and cardiovascular diseases, as well as diabetes and septic shock. In this article, we present an overview of the inhibitory and facilitative roles that EVs play in the process of septic shock, the potential role of EVs in the diagnosis of septic shock, and the potential therapeutic applications of both native and engineered EVs in the management of septic shock.

Keywords

References

  1. Nat Rev Dis Primers. 2016 Jun 30;2:16045 [PMID: 28117397]
  2. Cell Biosci. 2023 Mar 7;13(1):46 [PMID: 36879272]
  3. Bioscience. 2015 Aug 1;65(8):783-797 [PMID: 26955082]
  4. Am J Physiol Heart Circ Physiol. 2021 Jun 1;320(6):H2385-H2400 [PMID: 33989079]
  5. Commun Biol. 2022 Jun 6;5(1):543 [PMID: 35668098]
  6. Clin Sci (Lond). 2021 Jan 29;135(2):347-365 [PMID: 33416075]
  7. Crit Care. 2020 Jun 5;24(1):287 [PMID: 32503670]
  8. mSphere. 2018 Dec 19;3(6): [PMID: 30567900]
  9. Aging (Albany NY). 2021 Jan 6;13(1):1440-1457 [PMID: 33406504]
  10. Inflammation. 2022 Feb;45(1):331-342 [PMID: 34478012]
  11. Crit Care Med. 2007 Mar;35(3):849-55 [PMID: 17205019]
  12. J Cell Mol Med. 2017 Oct;21(10):2403-2411 [PMID: 28382754]
  13. Stem Cell Res Ther. 2021 Jan 7;12(1):14 [PMID: 33413595]
  14. Biochem Biophys Res Commun. 2018 May 23;499(4):856-861 [PMID: 29625113]
  15. J Immunol. 2008 Feb 1;180(3):1895-902 [PMID: 18209087]
  16. Curr Biol. 2018 Apr 23;28(8):R435-R444 [PMID: 29689228]
  17. Sci Rep. 2016 Nov 07;6:36696 [PMID: 27819302]
  18. Crit Care. 2021 Oct 12;25(1):356 [PMID: 34641966]
  19. J Biol Chem. 2011 Sep 16;286(37):32542-51 [PMID: 21778228]
  20. Cell Death Discov. 2023 Jan 21;9(1):19 [PMID: 36681676]
  21. Pharmacol Res. 2019 Nov;149:104440 [PMID: 31479750]
  22. JAMA. 2016 Feb 23;315(8):801-10 [PMID: 26903338]
  23. J Thromb Haemost. 2014 May;12(5):614-27 [PMID: 24618123]
  24. Eur J Med Chem. 2020 Feb 15;188:111955 [PMID: 31893550]
  25. Front Pharmacol. 2021 Dec 06;12:791648 [PMID: 34938194]
  26. Bioengineered. 2022 Mar;13(3):6323-6331 [PMID: 35212606]
  27. Med Clin North Am. 2020 Jul;104(4):573-585 [PMID: 32505253]
  28. Life Sci. 2021 Apr 15;271:119192 [PMID: 33577850]
  29. Crit Care. 2023 Mar 21;27(1):97 [PMID: 36941681]
  30. J Immunol. 2021 Jul 15;207(2):661-670 [PMID: 34193605]
  31. J Trauma Acute Care Surg. 2019 Dec;87(6):1336-1345 [PMID: 31389921]
  32. J Extracell Vesicles. 2020 May 26;9(1):1764213 [PMID: 32944168]
  33. Crit Care. 2018 Mar 15;22(1):68 [PMID: 29540208]
  34. Crit Care. 2020 Jun 29;24(1):380 [PMID: 32600436]
  35. Front Pharmacol. 2023 Mar 13;14:1125866 [PMID: 36992838]
  36. Clin Chem Lab Med. 2012 Feb 11;50(8):1423-8 [PMID: 22868808]
  37. Clin Microbiol Rev. 2018 Feb 28;31(2): [PMID: 29490932]
  38. Adv Mater. 2022 May;34(19):e2108476 [PMID: 35267211]
  39. J Am Soc Nephrol. 2014 Sep;25(9):2017-27 [PMID: 24700864]
  40. Nanoscale. 2022 Mar 31;14(13):4935-4945 [PMID: 35225315]
  41. Crit Care Med. 2021 Jan 1;49(1):e41-e52 [PMID: 33196529]
  42. J Extracell Vesicles. 2019 Sep 28;8(1):1669881 [PMID: 31632618]
  43. FASEB J. 2019 Dec;33(12):14270-14280 [PMID: 31682515]
  44. Inflammation. 2023 Feb;46(1):418-431 [PMID: 36171490]
  45. Int Immunopharmacol. 2022 Oct;111:109098 [PMID: 35944460]
  46. Nat Cell Biol. 2019 Aug;21(8):918-920 [PMID: 31371826]
  47. Science. 2020 Feb 7;367(6478): [PMID: 32029601]
  48. N Engl J Med. 2013 Aug 29;369(9):840-51 [PMID: 23984731]
  49. Commun Biol. 2021 Oct 7;4(1):1165 [PMID: 34621018]
  50. J Allergy Clin Immunol. 2020 Sep;146(3):518-534.e1 [PMID: 32896310]
  51. Nat Commun. 2022 Dec 2;13(1):7455 [PMID: 36460692]
  52. J Cell Mol Med. 2021 May;25(10):4786-4799 [PMID: 33745232]
  53. Nat Rev Mol Cell Biol. 2018 Apr;19(4):213-228 [PMID: 29339798]
  54. Front Cell Infect Microbiol. 2022 Aug 18;12:854126 [PMID: 36061862]
  55. Am J Physiol Lung Cell Mol Physiol. 2006 Apr;290(4):L622-L645 [PMID: 16531564]
  56. Br J Anaesth. 2022 May;128(5):864-873 [PMID: 35131096]
  57. Thromb Haemost. 2014 Jan;111(1):154-64 [PMID: 24108660]
  58. Redox Biol. 2023 Jun;62:102655 [PMID: 36913799]
  59. BMJ. 2016 May 23;353:i1585 [PMID: 27217054]
  60. Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E244-E252 [PMID: 29263096]
  61. Crit Care Med. 2016 Oct;44(10):e930-9 [PMID: 27322364]
  62. Mol Ther. 2019 Oct 2;27(10):1758-1771 [PMID: 31405809]
  63. Front Cell Infect Microbiol. 2021 May 10;11:646546 [PMID: 34041043]
  64. Cell Res. 2017 Jun;27(6):722-723 [PMID: 28524163]
  65. Front Immunol. 2020 May 07;11:825 [PMID: 32457753]
  66. J Extracell Vesicles. 2018 Nov 23;7(1):1535750 [PMID: 30637094]
  67. Intensive Care Med. 2013 Oct;39(10):1695-703 [PMID: 23793890]
  68. Thromb Haemost. 2022 Apr;122(4):506-516 [PMID: 34134169]
  69. Nat Rev Mol Cell Biol. 2012 Apr 04;13(5):283-96 [PMID: 22473468]
  70. Mol Ther Nucleic Acids. 2020 Sep 4;21:51-74 [PMID: 32506014]
  71. J Adv Res. 2022 Jul;39:203-223 [PMID: 35777909]
  72. Sci Adv. 2020 Apr 08;6(15):eaaz6980 [PMID: 32285005]
  73. Exp Mol Med. 2022 Sep;54(9):1563-1576 [PMID: 36131027]
  74. Am J Respir Crit Care Med. 2016 Feb 1;193(3):259-72 [PMID: 26414292]
  75. Front Immunol. 2019 Jul 12;10:1560 [PMID: 31354717]
  76. J Cell Mol Med. 2020 Aug;24(16):9439-9445 [PMID: 32639098]
  77. Mol Cell Endocrinol. 2021 Apr 5;525:111178 [PMID: 33556472]
  78. Sci Rep. 2018 Jul 3;8(1):10006 [PMID: 29968773]
  79. Free Radic Biol Med. 2021 Mar;165:54-66 [PMID: 33476797]
  80. J Pineal Res. 2016 Mar;60(2):178-92 [PMID: 26607398]

MeSH Term

Humans
Shock, Septic
Extracellular Vesicles
Sepsis
Cardiovascular Diseases
Cell Communication

Word Cloud

Created with Highcharts 10.0.0shocksepticEVsvesiclespotentialtreatmentextracellularrolediagnosismortalitynanoscaleplaypathogenesisdiseasesoverviewrolesSepticsubsetsepsisfatalconditionassociatedhighmorbidityHoweverpathophysiologyfullyunderstoodMoreoverdiagnosticmarkersemployedidentifyinglackoptimalsensitivityspecificityCurrentprotocolseffectiveloweringratepatientscellsexhibitcapabilityreleasevitalintercellularcommunicationrecentyearsresearchersinvestigateddifferentoncologicalneurologicalcardiovascularwelldiabetesarticlepresentinhibitoryfacilitativeprocesstherapeuticapplicationsnativeengineeredmanagementmechanisms

Similar Articles

Cited By