Radiation-induced glymphatic dysfunction in patients with nasopharyngeal carcinoma: a study using diffusion tensor image analysis along the perivascular space.

Xingyou Zheng, Jianchun Peng, Qing Zhao, Li Li, Jian-Ming Gao, Keyang Zhou, Bei Tan, Lingling Deng, Youming Zhang
Author Information
  1. Xingyou Zheng: Department of Medical Imaging, The Fourth Hospital of Changsha, Changsha, Hunan, China.
  2. Jianchun Peng: Department of Radiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
  3. Qing Zhao: Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.
  4. Li Li: Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
  5. Jian-Ming Gao: Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
  6. Keyang Zhou: Department of Radiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
  7. Bei Tan: Department of Radiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
  8. Lingling Deng: Department of Radiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
  9. Youming Zhang: Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.

Abstract

Radiation encephalopathy (RE) refers to radiation-induced brain necrosis and is a life-threatening complication in patients with nasopharyngeal carcinoma (NPC) after radiotherapy (RT), and radiation-induced pre-symptomatic glymphatic alterations have not yet been investigated. We used diffusion tensor image analysis along the perivascular space (DTI-ALPS) index to examine the pre-symptomatic glymphatic alterations in NPC patients following RT. A total of 109 patients with NPC consisted of Pre-RT ( = 35) and Post-RT ( = 74) cohorts were included. The post-RT NPC patients, with normal-appearing brain structure at the time of MRI, were further divided into Post-RT-RE- ( = 58) and Post-RT-RE+ ( = 16) subgroups based on the detection of RE in follow-up. We observed lower DTI-ALPS index, DTI-ALPS index and DTI-ALPS index in post-RT patients than that in pre-RT patients ( < 0.05). We further found that post-RT-RE+ patients demonstrated significantly lower DTI-ALPS ( = 0.013), DTI-ALPS ( = 0.011) and marginally lower DTI-ALPS ( = 0.07) than Post-RT patients. Significant negative correlations were observed between the maximum dosage of radiation-treatment (MDRT) and DTI-ALPS index ( = 0.003) as well as DTI-ALPS index ( = 0.004). Receiver operating characteristic (ROC) curve analysis showed that DTI-ALPS index exhibited good performance (AUC = 0.706) in identifying patients more likely developing RE. We concluded that glympathic function was impaired in NPC patients following RT and DTI-ALPS index may serve as a novel imaging biomarker for diagnosis of RE.

Keywords

References

  1. Neuroimage Clin. 2017 Mar 02;14:610-621 [PMID: 28348952]
  2. Brain Res. 2003 Apr 18;969(1-2):59-69 [PMID: 12676365]
  3. Brain Plast. 2018 Dec 12;4(1):17-52 [PMID: 30564545]
  4. J Neurosci. 2021 Sep 15;41(37):7698-7711 [PMID: 34526407]
  5. Sleep Med. 2022 Jan;89:176-181 [PMID: 35030357]
  6. Cytotherapy. 2016 Jan;18(1):53-64 [PMID: 26719199]
  7. Front Cell Neurosci. 2015 Oct 27;9:414 [PMID: 26578880]
  8. Neuroimage. 2004;23 Suppl 1:S208-19 [PMID: 15501092]
  9. Front Neurosci. 2023 Mar 31;17:1132393 [PMID: 37065921]
  10. Int J Radiat Oncol Biol Phys. 2009 Jul 1;74(3):934-41 [PMID: 19480972]
  11. Annu Rev Pathol. 2018 Jan 24;13:379-394 [PMID: 29195051]
  12. Lancet. 2016 Mar 5;387(10022):1012-1024 [PMID: 26321262]
  13. J Neuroimmunol. 2012 Nov 15;252(1-2):24-32 [PMID: 22917522]
  14. Neurobiol Dis. 2006 Mar;21(3):457-67 [PMID: 16202616]
  15. Oxid Med Cell Longev. 2021 Feb 16;2021:4034509 [PMID: 33680283]
  16. J Magn Reson Imaging. 2009 Nov;30(5):999-1004 [PMID: 19856413]
  17. Radiother Oncol. 1993 Oct;29(1):60-8 [PMID: 8295989]
  18. NMR Biomed. 2023 Sep 7;:e5030 [PMID: 37675787]
  19. Neurochem Res. 2015 Dec;40(12):2583-99 [PMID: 25947369]
  20. Neuroradiology. 2014 May;56(5):423-30 [PMID: 24609527]
  21. J Neurosci. 2013 Nov 13;33(46):18190-9 [PMID: 24227727]
  22. Lancet. 2019 Jul 6;394(10192):64-80 [PMID: 31178151]
  23. Brain Imaging Behav. 2020 Oct;14(5):1964-1978 [PMID: 31264197]
  24. Front Neurosci. 2018 Aug 27;12:599 [PMID: 30210281]
  25. Radiol Med. 2023 Sep;128(9):1148-1161 [PMID: 37462887]
  26. Mol Neurobiol. 2017 Mar;54(2):1022-1032 [PMID: 26797684]
  27. Front Oncol. 2021 Jul 12;11:687127 [PMID: 34322388]
  28. Neuroimage Clin. 2023;40:103513 [PMID: 37774646]
  29. Cancer. 2016 Feb 15;122(4):546-58 [PMID: 26588425]
  30. Radiother Oncol. 1986 Apr;5(4):321-31 [PMID: 3726169]
  31. Neurosci Biobehav Rev. 2018 Jul;90:26-33 [PMID: 29608988]
  32. Neurology. 2022 Dec 12;99(24):e2648-e2660 [PMID: 36123122]
  33. Front Neurosci. 2021 Jul 19;15:692575 [PMID: 34349618]
  34. Front Neurol. 2023 May 12;14:1148878 [PMID: 37251219]
  35. Neuroimage. 2021 Sep;238:118257 [PMID: 34118396]
  36. J Magn Reson Imaging. 2020 Jan;51(1):11-24 [PMID: 31423710]
  37. NPJ Parkinsons Dis. 2022 Dec 21;8(1):174 [PMID: 36543809]
  38. Int J Mol Sci. 2021 Jul 13;22(14): [PMID: 34299111]
  39. Jpn J Radiol. 2017 Apr;35(4):172-178 [PMID: 28197821]
  40. Front Cell Neurosci. 2019 May 16;13:204 [PMID: 31156392]
  41. Oxid Med Cell Longev. 2022 Jul 5;2022:2694316 [PMID: 35847591]
  42. Hum Brain Mapp. 2018 Jan;39(1):407-427 [PMID: 29058342]
  43. Neurobiol Aging. 2023 Jul;127:12-22 [PMID: 37018882]
  44. Int J Radiat Biol. 2000 Aug;76(8):1045-53 [PMID: 10947117]
  45. Front Aging Neurosci. 2021 Jul 08;13:689098 [PMID: 34305569]
  46. Front Neurosci. 2022 Jul 04;16:915164 [PMID: 35860295]
  47. Ann Neurol. 2014 Dec;76(6):845-61 [PMID: 25204284]

Word Cloud

Created with Highcharts 10.0.0DTI-ALPSpatientsindexNPC = 0REglymphaticencephalopathynasopharyngealRTanalysislowerradiation-inducedbraincarcinomapre-symptomaticalterationsdiffusiontensorimagealongperivascularspacefollowingPost-RTpost-RTobservedfunctionimagingbiomarkerradiationRadiationrefersnecrosislife-threateningcomplicationradiotherapyyetinvestigatedusedexaminetotal109consistedPre-RT = 35 = 74cohortsincludednormal-appearingstructuretimeMRIdividedPost-RT-RE- = 58Post-RT-RE+ = 16subgroupsbaseddetectionfollow-uppre-RT< 005foundpost-RT-RE+demonstratedsignificantly013011marginally07Significantnegativecorrelationsmaximumdosageradiation-treatmentMDRT003well004ReceiveroperatingcharacteristicROCcurveshowedexhibitedgoodperformanceAUC = 0706identifyinglikelydevelopingconcludedglympathicimpairedmayservenoveldiagnosisRadiation-induceddysfunctioncarcinoma:studyusing

Similar Articles

Cited By