Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency.

Khaled S Allemailem
Author Information
  1. Khaled S Allemailem: Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia. ORCID

Abstract

The rapid spread of multidrug resistance (MDR), due to abusive use of antibiotics has led to global health emergency, causing substantial morbidity and mortality. Bacteria attain MDR by different means such as antibiotic modification/degradation, target protection/modification/bypass, and enhanced efflux mechanisms. The classical approaches of counteracting MDR Bacteria are expensive and time-consuming, thus, it is highly significant to understand the molecular mechanisms of this resistance to curb the problem from core level. The revolutionary approach of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated sequence 9 (CRISPR/Cas9), considered as a next-generation genome-editing tool presents an innovative opportunity to precisely target and edit bacterial genome to alter their MDR strategy. Different Bacteria possessing antibiotic resistance genes such as A, B, R, A, B and that have been targeted by CRISPR/Cas9 to re-sensitize these pathogens against antibiotics, such as methicillin, erythromycin, tigecycline, colistin and carbapenem, respectively. The CRISPR/Cas9 from is the most widely studied genome-editing tool, consisting of a Cas9 DNA endonuclease associated with tracrRNA and crRNA, which can be systematically coupled as sgRNA. The targeting strategies of CRISPR/Cas9 to bacterial cells is mediated through phage, plasmids, vesicles and nanoparticles. However, the targeting approaches of this genome-editing tool to specific Bacteria is a challenging task and still remains at a very preliminary stage due to numerous obstacles awaiting to be solved. This review elaborates some recent updates about the molecular mechanisms of antibiotic resistance and the innovative role of CRISPR/Cas9 system in modulating these resistance mechanisms. Furthermore, the delivery approaches of this genome-editing system in bacterial cells are discussed. In addition, some challenges and future prospects are also described.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):12956-61 [PMID: 26438831]
  2. Bioconjug Chem. 2017 Apr 19;28(4):957-967 [PMID: 28215090]
  3. Microb Pathog. 2019 Nov;136:103719 [PMID: 31493501]
  4. Nat Biotechnol. 2014 Nov;32(11):1141-5 [PMID: 25240928]
  5. Front Microbiol. 2015 Apr 09;6:282 [PMID: 25914685]
  6. Biotechnol Bioeng. 2019 Dec;116(12):3149-3159 [PMID: 31433061]
  7. Nucleic Acids Res. 2021 Apr 6;49(6):3584-3598 [PMID: 33660775]
  8. Molecules. 2016 May 10;21(5): [PMID: 27171072]
  9. Mol Ther. 2019 Apr 10;27(4):735-746 [PMID: 30803822]
  10. FEMS Microbiol Lett. 2019 Nov 1;366(22): [PMID: 31905238]
  11. Mol Microbiol. 2017 Feb;103(4):713-728 [PMID: 27874224]
  12. PLoS One. 2016 Apr 26;11(4):e0153777 [PMID: 27115154]
  13. Sci Rep. 2017 Oct 9;7(1):12807 [PMID: 28993692]
  14. J Gen Microbiol. 1988 Mar;134(3):585-98 [PMID: 3053973]
  15. Expert Rev Anti Infect Ther. 2010 Mar;8(3):289-302 [PMID: 20192683]
  16. J Nanobiotechnology. 2021 Dec 4;19(1):401 [PMID: 34863214]
  17. BMC Biotechnol. 2012 Aug 20;12:52 [PMID: 22906146]
  18. Open Forum Infect Dis. 2020 Aug 27;7(9):ofaa389 [PMID: 33005701]
  19. FEBS Lett. 1985 Feb 25;181(2):385-9 [PMID: 2982666]
  20. Prog Mol Biol Transl Sci. 2021;181:165-183 [PMID: 34127193]
  21. Expert Opin Drug Deliv. 2015;12(9):1411-24 [PMID: 25937143]
  22. Nat Rev Microbiol. 2023 May;21(5):280-295 [PMID: 36411397]
  23. Nat Rev Microbiol. 2021 Jan;19(1):23-36 [PMID: 32814862]
  24. Nature. 2014 Sep 25;513(7519):569-73 [PMID: 25079318]
  25. Microbiol Res. 2017 Sep;202:30-35 [PMID: 28647120]
  26. Mol Microbiol. 2002 Mar;43(6):1387-400 [PMID: 11952893]
  27. PLoS Pathog. 2018 Jun 14;14(6):e1006990 [PMID: 29902258]
  28. Infect Drug Resist. 2020 Apr 20;13:1111-1121 [PMID: 32368102]
  29. FEBS Lett. 1988 Mar 28;230(1-2):171-5 [PMID: 2450783]
  30. RNA Biol. 2019 Apr;16(4):380-389 [PMID: 30856357]
  31. J Bacteriol. 1985 Mar;161(3):1010-6 [PMID: 2982781]
  32. Front Oncol. 2020 Aug 07;10:1387 [PMID: 32850447]
  33. Mol Genet Genomics. 2017 Jun;292(3):525-533 [PMID: 28251317]
  34. Nat Rev Microbiol. 2019 Jul;17(7):441-448 [PMID: 30980069]
  35. Antibiotics (Basel). 2023 May 29;12(6): [PMID: 37370299]
  36. Antimicrob Agents Chemother. 2003 Mar;47(3):869-77 [PMID: 12604514]
  37. Nanomaterials (Basel). 2017 Apr 28;7(5): [PMID: 28452950]
  38. Adv Drug Deliv Rev. 2021 Sep;176:113864 [PMID: 34271022]
  39. World J Gastrointest Pharmacol Ther. 2017 Aug 6;8(3):162-173 [PMID: 28828194]
  40. Nat Commun. 2019 Oct 04;10(1):4544 [PMID: 31586051]
  41. Sci Rep. 2017 Mar 21;7:44929 [PMID: 28322317]
  42. Antibiotics (Basel). 2014 Nov 04;3(4):572-94 [PMID: 27025757]
  43. J Control Release. 2017 Nov 28;266:17-26 [PMID: 28911805]
  44. Clin Microbiol Infect. 2019 Jan;25(1):60-64 [PMID: 29715552]
  45. Sci Rep. 2021 Sep 07;11(1):17801 [PMID: 34493749]
  46. Mol Syst Biol. 2021 Oct;17(10):e10335 [PMID: 34665940]
  47. Expert Rev Vaccines. 2018 Mar;17(3):217-227 [PMID: 29382248]
  48. mBio. 2012 Mar 20;3(2): [PMID: 22434850]
  49. Science. 2019 Apr 5;364(6435): [PMID: 30948524]
  50. mBio. 2021 Feb 23;12(1): [PMID: 33622726]
  51. Cell Host Microbe. 2019 Feb 13;25(2):219-232 [PMID: 30763536]
  52. J Antibiot (Tokyo). 2016 Sep;69(9):660-85 [PMID: 26758489]
  53. Eur J Pharm Biopharm. 2017 Oct;119:381-395 [PMID: 28739288]
  54. Front Microbiol. 2020 Jan 22;10:3078 [PMID: 32038537]
  55. Microb Ecol. 2017 Nov;74(4):1001-1008 [PMID: 28492988]
  56. ACS Chem Biol. 2018 Feb 16;13(2):357-365 [PMID: 29202216]
  57. Front Microbiol. 2020 Jan 10;10:2934 [PMID: 31998256]
  58. Cancer Commun (Lond). 2022 Dec;42(12):1257-1287 [PMID: 36209487]
  59. Antimicrob Agents Chemother. 2020 Aug 20;64(9): [PMID: 32631827]
  60. Antibiotics (Basel). 2022 Feb 04;11(2): [PMID: 35203804]
  61. Nature. 2014 Mar 6;507(7490):62-7 [PMID: 24476820]
  62. mBio. 2010 Oct 12;1(4): [PMID: 21060735]
  63. Appl Environ Microbiol. 2015 Jul;81(14):4841-9 [PMID: 25956778]
  64. J Antibiot (Tokyo). 2015 Apr;68(4):223-45 [PMID: 25351947]
  65. Crit Rev Biochem Mol Biol. 2018 Feb;53(1):29-48 [PMID: 29108429]
  66. Pharmaceutics. 2021 Mar 08;13(3): [PMID: 33800235]
  67. Arch Dis Child Educ Pract Ed. 2016 Aug;101(4):213-5 [PMID: 27059283]
  68. Nat Rev Microbiol. 2015 Jan;13(1):42-51 [PMID: 25435309]
  69. Annu Rev Biophys. 2017 May 22;46:505-529 [PMID: 28375731]
  70. Antimicrob Agents Chemother. 2014 Dec;58(12):7430-40 [PMID: 25267679]
  71. Biophys Rev. 2018 Apr;10(2):535-542 [PMID: 29299830]
  72. Infect Drug Resist. 2020 Apr 22;13:1171-1178 [PMID: 32368108]
  73. Antimicrob Agents Chemother. 1998 Sep;42(9):2215-20 [PMID: 9736537]
  74. Microorganisms. 2021 Apr 29;9(5): [PMID: 33946643]
  75. mBio. 2021 Oct 26;12(5):e0260821 [PMID: 34634938]
  76. Theranostics. 2020 Mar 15;10(10):4374-4382 [PMID: 32292501]
  77. AMB Express. 2019 Jun 17;9(1):87 [PMID: 31209685]
  78. Sci Rep. 2016 Dec 01;6:37938 [PMID: 27905467]
  79. Viruses. 2017 Mar 18;9(3): [PMID: 28335451]
  80. Antibiotics (Basel). 2021 Jan 29;10(2): [PMID: 33572929]
  81. mBio. 2021 Jun 29;12(3):e0136121 [PMID: 34154416]
  82. Int J Antimicrob Agents. 2019 Jan;53(1):1-8 [PMID: 30267758]
  83. Front Microbiol. 2020 Jul 24;11:1669 [PMID: 32793156]
  84. Antimicrob Agents Chemother. 2019 Jun 24;63(7): [PMID: 30988149]
  85. Sci Transl Med. 2020 Jun 24;12(549): [PMID: 32581135]
  86. Biochemistry. 2015 Nov 17;54(45):6842-51 [PMID: 26512730]
  87. Int J Mol Sci. 2023 Apr 11;24(8): [PMID: 37108214]
  88. Nat Rev Drug Discov. 2012 Jan 20;11(2):125-40 [PMID: 22262036]
  89. Viruses. 2018 Jun 19;10(6): [PMID: 29921752]
  90. Nat Biomed Eng. 2017;1:889-901 [PMID: 29805845]
  91. Ann Clin Microbiol Antimicrob. 2019 Jul 5;18(1):21 [PMID: 31277669]
  92. Biochimie. 2015 Oct;117:119-28 [PMID: 25868999]
  93. J Exp Med. 2017 Aug 7;214(8):2175-2191 [PMID: 28701368]
  94. Cell. 2014 Feb 27;156(5):935-49 [PMID: 24529477]
  95. J Bacteriol. 1992 Dec;174(23):7868-72 [PMID: 1447159]
  96. J Appl Microbiol. 2012 Oct;113(4):723-36 [PMID: 22583565]
  97. Int J Mol Sci. 2022 May 12;23(10): [PMID: 35628210]
  98. Science. 2014 Mar 14;343(6176):1247997 [PMID: 24505130]
  99. Front Microbiol. 2019 Apr 01;10:539 [PMID: 30988669]
  100. Chem Rev. 2021 May 12;121(9):5479-5596 [PMID: 33909410]
  101. Mol Microbiol. 1991 Dec;5(12):2923-33 [PMID: 1809836]
  102. J Infect Dis. 2002 Oct 15;186(8):1155-60 [PMID: 12355367]
  103. Front Microbiol. 2021 Feb 19;12:606360 [PMID: 33679633]
  104. Theranostics. 2021 Mar 4;11(10):4910-4928 [PMID: 33754035]
  105. J Appl Microbiol. 2012 May;112(5):841-52 [PMID: 22324439]
  106. Integr Biol (Camb). 2017 Feb 20;9(2):109-122 [PMID: 28045163]
  107. Antimicrob Agents Chemother. 2019 Oct 22;63(11): [PMID: 31527030]
  108. Neurol Ther. 2020 Dec;9(2):419-434 [PMID: 33089409]
  109. Curr Opin Biotechnol. 2021 Apr;68:174-180 [PMID: 33360715]
  110. Stem Cell Rev Rep. 2022 Oct;18(7):2328-2350 [PMID: 35461466]
  111. Science. 2016 Jan 1;351(6268):aad3292 [PMID: 26722002]
  112. J Antimicrob Chemother. 2019 Sep 01;74(9):2559-2565 [PMID: 31203365]
  113. Antibiotics (Basel). 2020 Feb 06;9(2): [PMID: 32041137]
  114. Clin Microbiol Rev. 2012 Jul;25(3):450-70 [PMID: 22763634]
  115. Curr Top Microbiol Immunol. 2016;398:3-33 [PMID: 27406189]
  116. J Med Microbiol. 2017 Jan;66(1):18-25 [PMID: 27959782]
  117. Front Immunol. 2021 Sep 20;12:733064 [PMID: 34616401]
  118. Signal Transduct Target Ther. 2020 Jan 3;5(1):1 [PMID: 32296011]
  119. J Cell Physiol. 2019 May;234(5):5751-5761 [PMID: 30362544]
  120. Int J Mol Sci. 2021 Jun 01;22(11): [PMID: 34205995]
  121. Int J Mol Sci. 2021 Jun 04;22(11): [PMID: 34199901]
  122. Science. 2015 Jun 26;348(6242):1477-81 [PMID: 26113724]
  123. J Extracell Vesicles. 2014 Aug 11;3: [PMID: 25147647]
  124. Gene. 2019 Feb 15;685:70-75 [PMID: 30393194]
  125. Curr Opin Microbiol. 2017 Jun;37:155-160 [PMID: 28888103]
  126. Burns. 2017 Nov;43(7):1532-1543 [PMID: 28502784]
  127. Cell Syst. 2015 Sep 23;1(3):187-196 [PMID: 26973885]
  128. Antimicrob Resist Infect Control. 2020 Aug 10;9(1):131 [PMID: 32778162]
  129. Plasmid. 2017 Sep;93:6-16 [PMID: 28842132]
  130. Curr Opin Microbiol. 2018 Oct;45:131-139 [PMID: 29723841]
  131. PLoS One. 2019 Jan 15;14(1):e0209894 [PMID: 30645595]
  132. Nat Rev Drug Discov. 2017 Jun;16(6):387-399 [PMID: 28337020]
  133. Colloids Surf B Biointerfaces. 2016 Mar 1;139:87-94 [PMID: 26700237]
  134. Nat Methods. 2020 Dec;17(12):1183-1190 [PMID: 33077967]
  135. Pharmaceuticals (Basel). 2022 Nov 30;15(12): [PMID: 36558949]
  136. Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7260-7265 [PMID: 28652374]
  137. J Extracell Vesicles. 2021 Mar;10(5):e12076 [PMID: 33747370]
  138. Proteins. 2017 Feb;85(2):342-353 [PMID: 27936513]
  139. PLoS Pathog. 2021 Jul 8;17(7):e1009672 [PMID: 34237097]
  140. Nature. 2011 Mar 31;471(7340):602-7 [PMID: 21455174]
  141. J Biol Chem. 2014 May 2;289(18):12633-46 [PMID: 24634217]
  142. Life Sci. 2021 Aug 1;278:119647 [PMID: 34043990]
  143. mBio. 2014 Jan 28;5(1):e00928-13 [PMID: 24473129]
  144. Nat Biotechnol. 2014 Nov;32(11):1146-50 [PMID: 25282355]
  145. Front Microbiol. 2021 Aug 20;12:716064 [PMID: 34489905]
  146. J Bacteriol. 1991 Nov;173(22):7213-8 [PMID: 1657884]
  147. Mol Microbiol. 2014 Aug;93(3):391-402 [PMID: 24964724]
  148. Nat Rev Microbiol. 2011 Jun;9(6):467-77 [PMID: 21552286]
  149. Infect Drug Resist. 2022 Mar 19;15:1143-1154 [PMID: 35340673]
  150. FEMS Microbiol Rev. 2015 Jan;39(1):81-95 [PMID: 25154632]
  151. Int J Nanomedicine. 2023 Sep 29;18:5531-5559 [PMID: 37795042]
  152. ACS Cent Sci. 2016 Oct 26;2(10):756-763 [PMID: 27800559]
  153. J Adv Res. 2019 Jan 31;18:61-69 [PMID: 30809393]
  154. J Bacteriol. 1990 Aug;172(8):4710-4 [PMID: 2376570]
  155. Sci Rep. 2021 Aug 26;11(1):17267 [PMID: 34446818]
  156. Nat Biotechnol. 2018 Nov;36(10):971-976 [PMID: 30247487]
  157. PLoS One. 2019 Nov 22;14(11):e0220421 [PMID: 31756187]
  158. Nat Microbiol. 2017 Jan 23;2:16257 [PMID: 28112716]

MeSH Term

CRISPR-Cas Systems
RNA, Guide, CRISPR-Cas Systems
Gene Editing
CRISPR-Associated Protein 9
Bacteria
Anti-Bacterial Agents
Drug Resistance, Multiple, Bacterial

Chemicals

RNA, Guide, CRISPR-Cas Systems
CRISPR-Associated Protein 9
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0resistanceCRISPR/Cas9MDRmechanismsapproachesbacteriagenome-editingantibiotictoolbacterialmultidrugdueantibioticstargetmolecularinnovativeBtargetingcellssystemdeliveryrapidspreadabusiveuseledglobalhealthemergencycausingsubstantialmorbiditymortalityBacteriaattaindifferentmeansmodification/degradationprotection/modification/bypassenhancedeffluxclassicalcounteractingexpensivetime-consumingthushighlysignificantunderstandcurbproblemcorelevelrevolutionaryapproachclusteredregularlyinterspacedshortpalindromicrepeatsCRISPR/CRISPR-associatedsequence9considerednext-generationpresentsopportunitypreciselyeditgenomealterstrategyDifferentpossessinggenesRtargetedre-sensitizepathogensmethicillinerythromycintigecyclinecolistincarbapenemrespectivelywidelystudiedconsistingCas9DNAendonucleaseassociatedtracrRNAcrRNAcansystematicallycoupledsgRNAstrategiesmediatedphageplasmidsvesiclesnanoparticlesHoweverspecificchallengingtaskstillremainspreliminarystagenumerousobstaclesawaitingbe solvedreviewelaboratesrecentupdatesrolemodulatingFurthermorediscussedadditionchallengesfutureprospectsalsodescribedRecentAdvancesUnderstandingMolecularMechanismsMultidrugResistanceNovelApproachesCRISPR/Cas9-BasedGenome-EditingCombatHealthEmergencygeneeditingnanoparticle

Similar Articles

Cited By