Primary anterior cruciate ligament repair-morphological and quantitative assessment by 7-T MRI and clinical outcome after 1.5 years.
Milena L Pachowsky, Stefan Söllner, Kolja Gelse, Jannik Sambale, Armin M Nagel, Georg Schett, Marc Saake, Michael Uder, Frank W Roemer, Rafael Heiss
Author Information
Milena L Pachowsky: Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany. milena.pachowsky@gmail.com. ORCID
Stefan Söllner: Department of Trauma and Orthopaedic Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Kolja Gelse: Department of Trauma and Orthopaedic Surgery, Klinikum Traunstein, Traunstein, Germany.
Jannik Sambale: Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany.
Armin M Nagel: Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Georg Schett: Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany.
Marc Saake: Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Michael Uder: Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Frank W Roemer: Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Rafael Heiss: Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
OBJECTIVES: The purpose of this study was to assess morphological and quantitative changes of the anterior cruciate ligament (ACL) and cartilage after ACL repair. METHODS: 7T MRI of the knee was acquired in 31 patients 1.5 years after ACL repair and in 13 controls. Proton density-weighted images with fat saturation (PD-fs) were acquired to assess ACL width, signal intensity, elongation, and fraying. T2/T2* mapping was performed for assessment of ACL and cartilage. Segmentation of the ACL, femoral, and tibial cartilage was carried out at 12 ROIs. The outcome evaluation consisted of the Lysholm Knee Score and International Knee Documentation Committee (IKDC) subjective score and clinical examination. RESULTS: ACL showed a normal signal intensity in 96.8% and an increased width in 76.5% after repair. Fraying occurred in 22.6% without having an impact on the clinical outcome (Lysholm score: 90.39 ± 9.75, p = 0.76 compared to controls). T2 analysis of the ACL revealed no difference between patients and controls (p = 0.74). Compared to controls, assessment of the femoral and tibial cartilage showed a significant increase of T2* times in all ROIs, except at the posterolateral femur. Patients presented a good outcome in clinical examination with a Lysholm score of 87.19 ± 14.89 and IKDC of 80.23 ± 16.84. CONCLUSION: T2 mapping results suggest that the tissue composition of the ACL after repair is similar to that of a native ACL after surgery, whereas the ACL exhibits an increased width. Fraying of the ACL can occur without having any impact on functional outcomes. T2* analysis revealed early degradation at the cartilage. CLINICAL RELEVANCE STATEMENT: MRI represents a noninvasive diagnostic tool for the morphological and compositional assessment of the anterior cruciate ligament after repair, whereas knowledge about post-surgical alterations is crucial for adequate imaging interpretation. KEY POINTS: • There has been renewed interest in repairing the anterior cruciate ligament with a proximally torn ligament. • T2 times of the anterior cruciate ligament do not differ between anterior cruciate ligament repair patients and controls. • T2 mapping may serve as a surrogate for the evaluation of the anterior cruciate ligament after repair.
Hewett TE, Di Stasi SL, Myer GD (2013) Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med 41:216–224
[PMID: 23041233]
Sanders TL, Maradit Kremers H, Bryan AJ et al (2016) Incidence of and factors associated with the decision to undergo anterior cruciate ligament reconstruction 1 to 10 years after injury. Am J Sports Med 44:1558–1564
[PMID: 26928338]
Sanders TL, Maradit Kremers H, Bryan AJ et al (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44:1502–1507
[PMID: 26920430]
van der List JP, DiFelice GS (2017) Primary repair of the anterior cruciate ligament: a paradigm shift. Surgeon 15:161–168
[PMID: 27720666]
van der List JP, DiFelice GS (2017) Role of tear location on outcomes of open primary repair of the anterior cruciate ligament: a systematic review of historical studies. Knee 24:898–908
[PMID: 28803759]
Filbay SR, Roemer FW, Lohmander LS et al (2023) Evidence of ACL healing on MRI following ACL rupture treated with rehabilitation alone may be associated with better patient-reported outcomes: a secondary analysis from the KANON trial. Br J Sports Med 57:91–98
[PMID: 36328403]
Barrett DS (1991) Proprioception and function after anterior cruciate reconstruction. J Bone Joint Surg Br 73:833–837
[PMID: 1894677]
Dhillon MS, Bali K, Prabhakar S (2012) Differences among mechanoreceptors in healthy and injured anterior cruciate ligaments and their clinical importance. Muscles Ligaments Tendons J 2:38–43
[PMID: 23738272]
van der List JP, DiFelice GS (2017) Range of motion and complications following primary repair versus reconstruction of the anterior cruciate ligament. Knee 24:798–807
[PMID: 28549818]
Toy BJ, Yeasting RA, Morse DE, McCann P (1995) Arterial supply to the human anterior cruciate ligament. J Athl Train 30:149–152
[PMID: 16558326]
Nguyen DT, Ramwadhdoebe TH, van der Hart CP, Blankevoort L, Tak PP, van Dijk CN (2014) Intrinsic healing response of the human anterior cruciate ligament: an histological study of reattached ACL remnants. J Orthop Res 32:296–301
[PMID: 24600702]
Figueroa D, Melean P, Calvo R et al (2010) Magnetic resonance imaging evaluation of the integration and maturation of semitendinosus-gracilis graft in anterior cruciate ligament reconstruction using autologous platelet concentrate. Arthroscopy 26:1318–1325
[PMID: 20800986]
Hashemi J, Mansouri H, Chandrashekar N, Slauterbeck JR, Hardy DM, Beynnon BD (2011) Age, sex, body anthropometry, and ACL size predict the structural properties of the human anterior cruciate ligament. J Orthop Res 29:993–1001
[PMID: 21246609]
Radice F, Yanez R, Gutierrez V, Rosales J, Pinedo M, Coda S (2010) Comparison of magnetic resonance imaging findings in anterior cruciate ligament grafts with and without autologous platelet-derived growth factors. Arthroscopy 26:50–57
[PMID: 20117627]
Krug R, Stehling C, Kelley DA, Majumdar S, Link TM (2009) Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol 44:613–618
[PMID: 19652609]
Ladd ME, Bachert P, Meyerspeer M et al (2018) Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc 109:1–50
[PMID: 30527132]
Welsch GH, Juras V, Szomolanyi P et al (2012) Magnetic resonance imaging of the knee at 3 and 7 tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols. Eur Radiol 22:1852–1859
[PMID: 22538628]
Tao H, Qiao Y, Hu Y et al (2018) Quantitative T2-mapping and T2()-mapping evaluation of changes in cartilage matrix after acute anterior cruciate ligament rupture and the correlation between the results of both methods. Biomed Res Int 2018:7985672
[PMID: 29888279]
Hesper T, Hosalkar HS, Bittersohl D et al (2014) T2* mapping for articular cartilage assessment: principles, current applications, and future prospects. Skeletal Radiol 43:1429–1445
[PMID: 24643762]
Anz AW, Edison J, Denney TS et al (2020) 3-T MRI mapping is a valid in vivo method of quantitatively evaluating the anterior cruciate ligament: rater reliability and comparison across age. Skeletal Radiol 49:443–452
[PMID: 31482257]
Ranmuthu CDS, MacKay JW, Crowe VA, Kaggie JD, Kessler DA, McDonnell SM (2021) Quantitative analysis of the ACL and PCL using T1rho and T2 relaxation time mapping: an exploratory, cross-sectional comparison between OA and healthy control knees. BMC Musculoskelet Disord 22:916
[PMID: 34717593]
Newbould RD, Miller SR, Toms LD et al (2012) T2* measurement of the knee articular cartilage in osteoarthritis at 3T. J Magn Reson Imaging 35:1422–1429
[PMID: 22314961]
Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS (2013) Cartilage and meniscal T2 relaxation time as noninvasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage 21:1474–1484
[PMID: 23896316]
van der List JP, DiFelice GS (2017) Arthroscopic primary anterior cruciate ligament repair with suture augmentation. Arthrosc Tech 6:e1529–e1534
[PMID: 29354469]
Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10:150–154
[PMID: 6896798]
Hefti F, Muller W, Jakob RP, Staubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234
[PMID: 8536037]
Naraghi AM, White LM (2016) Imaging of athletic injuries of knee ligaments and menisci: sports imaging series. Radiology 281:23–40
[PMID: 27643766]
Schmitt B, Zbyn S, Stelzeneder D et al (2011) Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology 260:257–264
[PMID: 21460030]
Batista JP, Chahla J, Dalmau-Pastor M, Maestu R, Kunze KN, Guelfi M (2021) Arthroscopic anterior cruciate ligament repair with and without suture augmentation: technical note. J ISAKOS 6:251–256
[PMID: 34272302]
van Eck CF, Limpisvasti O, ElAttrache NS (2018) Is there a role for internal bracing and repair of the anterior cruciate ligament? A systematic literature review. Am J Sports Med 46:2291–2298
[PMID: 28783472]
Bachmaier S, DiFelice GS, Sonnery-Cottet B et al (2020) Treatment of acute proximal anterior cruciate ligament tears-Part 2: the role of internal bracing on gap formation and stabilization of repair techniques. Orthop J Sports Med 8:2325967119897423
[PMID: 32064294]
DiFelice GS, Villegas C, Taylor S (2015) Anterior cruciate ligament preservation: early results of a novel arthroscopic technique for suture anchor primary anterior cruciate ligament repair. Arthroscopy 31:2162–2171
[PMID: 26542201]
Geeslin AG, Lemos DF, Geeslin MG (2021) Knee ligament imaging: preoperative and postoperative evaluation. Clin Sports Med 40:657–675
[PMID: 34509204]
Smith C, McGarvey C, Harb Z et al (2016) Diagnostic efficacy of 3-T MRI for knee injuries using arthroscopy as a reference standard: a meta-analysis. AJR Am J Roentgenol 207:369–377
[PMID: 27248283]
Friebe B, Richter M, Penzlin S et al (2018) Assessment of low-grade meniscal and cartilage damage of the knee at 7 T: a comparison to 3 T imaging with arthroscopic correlation. Invest Radiol 53:390–396
[PMID: 29521888]
Springer E, Bohndorf K, Juras V et al (2017) Comparison of routine knee magnetic resonance imaging at 3 T and 7 T. Invest Radiol 52:42–54
[PMID: 27434621]
Ferretti A, Monaco E, Annibaldi A et al (2020) The healing potential of an acutely repaired ACL: a sequential MRI study. J Orthop Traumatol 21:14
[PMID: 32869122]
Lutz PM, Achtnich A, Schutte V, Woertler K, Imhoff AB, Willinger L (2022) Anterior cruciate ligament autograft maturation on sequential postoperative MRI is not correlated with clinical outcome and anterior knee stability. Knee Surg Sports Traumatol Arthrosc 30:3258–3267
[PMID: 34739559]
Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368
[PMID: 15643574]
Williams A, Qian Y, Bear D, Chu CR (2010) Assessing degeneration of human articular cartilage with ultra-short echo time (UTE) T2* mapping. Osteoarthritis Cartilage 18:539–546
[PMID: 20170769]
Williams AA, Erhart-Hledik JC, Asay JL et al (2021) Patient-reported outcomes and knee mechanics correlate with patellofemoral deep cartilage UTE-T2* 2 years after anterior cruciate ligament reconstruction. Am J Sports Med 49:675–683
[PMID: 33507800]
Grants
FOR 2886/2 Project Z (405969122)/Deutsche Forschungsgemeinschaft