Leisure time physical activity is associated with improved diastolic heart function and is partly mediated by unsupervised quantified metabolic health.

Hugo Klarenberg, Jeroen Hpm van der Velde, Carel Fw Peeters, Ilona A Dekkers, R de Mutsert, J Wouter Jukema, Frits R Rosendaal, Tim Leiner, Martijn Froeling, Harald Jorstad, S Matthijs Boekholdt, Gustav J Strijkers, Hildo J Lamb
Author Information
  1. Hugo Klarenberg: Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands. ORCID
  2. Jeroen Hpm van der Velde: Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
  3. Carel Fw Peeters: Division of Mathematical & Statistical Methods - Biometris, Wageningen University & Research, Wageningen, The Netherlands.
  4. Ilona A Dekkers: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
  5. R de Mutsert: Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
  6. J Wouter Jukema: Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
  7. Frits R Rosendaal: Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
  8. Tim Leiner: Department of Radiology, UMC Utrecht, Utrecht, The Netherlands.
  9. Martijn Froeling: Department of Radiology, UMC Utrecht, Utrecht, The Netherlands.
  10. Harald Jorstad: Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands. ORCID
  11. S Matthijs Boekholdt: Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
  12. Gustav J Strijkers: Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
  13. Hildo J Lamb: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.

Abstract

Objectives: To investigate the association between leisure time physical activity (LTPA) and MRI-based diastolic function and the mediating role of metabolic health.
Methods: This cross-sectional analysis comprised 901 participants (46% women, mean age (SD): 56 (6) years (The Netherlands, 2008-2012)). LTPA was assessed via questionnaire, quantified in metabolic equivalent of tasks (METs)-minutes per week and participants underwent abdominal and cardiovascular MRI. Confirmatory factor analysis was used to construct the metabolic load factor. Piecewise structural equation model with adjustments for confounders was used to determine associations between LTPA and diastolic function and the mediating effect of metabolic load.
Results: Significant differences in mitral early/late peak filling rate (E/A) ratio per SD of LTPA (men=1999, women=1870 MET-min/week) of 0.18, (95% CI= 0.03 to 0.33, p=0.021) were observed in men, but not in women: -0.01 (-0.01 to 0.34, p=0.058). Difference in deceleration time of mitral early filling (E-DT) was 0.13 (0.01 to 0.24, p=0.030) in men and 0.17 (0.05 to 0.28, p=0.005) in women. Metabolic load, including MRI-based visceral and subcutaneous adipose tissue, fasting glucose, high-density lipoprotein cholesterol and triglycerides, mediated these associations as follows: E/A-ratio of 0.030 (0.000 to 0.067, 19% mediated, p=0.047) in men but not in women: 0.058 (0.027 to 0.089, p<0.001) and E-DT not in men 0.004 (-0.012 to 0.021, p=0.602) but did in women 0.044 (0.013 to 0.057, 27% mediated, p=0.006).
Conclusions: A larger amount of LTPA was associated with improved diastolic function where confirmatory factor analysis-based metabolic load partly mediated this effect. Future studies should assess whether improving indicators of metabolic load alongside LTPA will benefit healthy diastolic function even more.

Keywords

References

  1. Biosensors (Basel). 2023 Jun 07;13(6): [PMID: 37366995]
  2. PLoS One. 2016 Aug 30;11(8):e0161066 [PMID: 27575490]
  3. Arterioscler Thromb Vasc Biol. 2004 Feb;24(2):e13-8 [PMID: 14766739]
  4. Am J Public Health. 1991 Sep;81(9):1166-73 [PMID: 1951829]
  5. Prev Med Rep. 2020 Dec 31;21:101290 [PMID: 33425668]
  6. Prog Cardiovasc Dis. 2012 Mar-Apr;54(5):380-6 [PMID: 22386288]
  7. J Diabetes Complications. 2022 Jun;36(6):108202 [PMID: 35491309]
  8. Med Sci Monit. 2012 Mar;18(3):MT19-25 [PMID: 22367134]
  9. Diabetologia. 2023 Mar;66(3):461-471 [PMID: 36316401]
  10. Circ Cardiovasc Qual Outcomes. 2018 Nov;11(11):e005263 [PMID: 30571339]
  11. PLoS One. 2018 Dec 12;13(12):e0208231 [PMID: 30540802]
  12. Ann Epidemiol. 2014 Oct;24(10):762-70 [PMID: 25238942]
  13. Eur J Heart Fail. 2013 Jul;15(7):742-6 [PMID: 23435761]
  14. Eur Heart J. 2016 Aug 21;37(32):2544-51 [PMID: 27071820]
  15. Eur J Epidemiol. 2013 Jun;28(6):513-23 [PMID: 23576214]
  16. Med Sci Sports Exerc. 2000 Sep;32(9 Suppl):S498-504 [PMID: 10993420]
  17. Endocrine. 2014 Jun;46(2):231-40 [PMID: 24287790]
  18. Neth Heart J. 2014 Oct;22(10):449-55 [PMID: 25187012]
  19. Sci Rep. 2019 Mar 14;9(1):4435 [PMID: 30872595]
  20. Lancet. 2012 Jul 21;380(9838):294-305 [PMID: 22818941]
  21. Curr Opin Cardiol. 2016 Sep;31(5):566-71 [PMID: 27455432]
  22. Circulation. 2017 Sep 12;136(11):982-992 [PMID: 28637881]
  23. Am J Epidemiol. 2003 Apr 15;157(8):701-11 [PMID: 12697574]
  24. Circulation. 2000 Jan 25;101(3):336-44 [PMID: 10645932]
  25. Aging (Albany NY). 2016 Jan;8(1):111-26 [PMID: 26824634]
  26. Am J Respir Crit Care Med. 2003 Jan 15;167(2):211-77 [PMID: 12524257]
  27. J Am Coll Cardiol. 2017 Mar 7;69(9):1129-1142 [PMID: 28254175]
  28. J Clin Epidemiol. 2003 Dec;56(12):1163-9 [PMID: 14680666]
  29. Circ Cardiovasc Imaging. 2016 Jun;9(6): [PMID: 27307555]
  30. Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6659-63 [PMID: 15096581]
  31. Circ Heart Fail. 2015 Jan;8(1):33-40 [PMID: 25399909]
  32. Br J Sports Med. 2021 Sep;55(18):1009-1017 [PMID: 33514558]
  33. Front Cardiovasc Med. 2018 Sep 11;5:127 [PMID: 30255026]
  34. Eur Heart J Cardiovasc Imaging. 2016 Dec;17(12):1321-1360 [PMID: 27422899]
  35. JACC Cardiovasc Imaging. 2016 Jun;9(6):756-8 [PMID: 26897673]
  36. J Clin Epidemiol. 2001 Apr;54(4):343-9 [PMID: 11297884]
  37. BMJ Open. 2012 Oct 08;2(5): [PMID: 23045359]
  38. J Am Coll Cardiol. 2013 Jul 23;62(4):263-71 [PMID: 23684677]
  39. Int J Cardiovasc Imaging. 2019 Jul;35(7):1249-1258 [PMID: 30825135]
  40. Cardiovasc Ultrasound. 2016 Nov 17;14(1):46 [PMID: 27855701]
  41. JACC Heart Fail. 2014 Jun;2(3):238-46 [PMID: 24952690]
  42. Nutr Metab Cardiovasc Dis. 2013 Dec;23(12):1263-70 [PMID: 23809149]
  43. Clin Cardiol. 1990 Aug;13(8):555-65 [PMID: 2204507]
  44. Br J Sports Med. 2020 Aug;54(15):898-905 [PMID: 31685526]

Word Cloud

Created with Highcharts 10.0.00metabolicp=0LTPAdiastolicfunctionloadmediatedmentimephysicalactivityfactor-001MRI-basedmediatinghealthanalysisparticipantsSDquantifiedpercardiovascularMRIusedassociationseffectmitralfilling021women:058E-DT030womenassociatedimprovedpartlyObjectives:investigateassociationleisureroleMethods:cross-sectionalcomprised90146% womenmeanage:566yearsNetherlands2008-2012assessedviaquestionnaireequivalenttasksMETs-minutesweekunderwentabdominalConfirmatoryconstructPiecewisestructuralequationmodeladjustmentsconfoundersdetermineResults:Significantdifferencesearly/latepeakrateE/Aratiomen=1999women=1870MET-min/week1895%CI=0333observed34Differencedecelerationearly1324170528005Metabolicincludingvisceralsubcutaneousadiposetissuefastingglucosehigh-densitylipoproteincholesteroltriglyceridesfollows:E/A-ratio00006719%047027089p<000100401260204401305727%006Conclusions:largeramountconfirmatoryanalysis-basedFuturestudiesassesswhetherimprovingindicatorsalongsidewillbenefithealthyevenmoreLeisureheartunsupervisedcardiologyepidemiologymetabolism

Similar Articles

Cited By