Time to Wake Up! The Ongoing Search for General Anesthetic Reversal Agents.

Drew M Cylinder, André A J van Zundert, Ken Solt, Bruno van Swinderen
Author Information
  1. Drew M Cylinder: Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
  2. André A J van Zundert: Queensland Brain Institute, and Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Australia.
  3. Ken Solt: Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.
  4. Bruno van Swinderen: Queensland Brain Institute, The University of Queensland, Brisbane, Australia. ORCID

Abstract

How general anesthetics work remains a topic of ongoing study. A parallel field of research has sought to identify methods to reverse general anesthesia. Reversal agents could shorten patients' recovery time and potentially reduce the risk of postoperative complications. An incomplete understanding of the mechanisms of general anesthesia has hampered the pursuit for reversal agents. Nevertheless, the search for reversal agents has furthered understanding of the mechanisms underlying general anesthesia. The study of potential reversal agents has highlighted the importance of rigorous criteria to assess recovery from general anesthesia in animal models, and has helped identify key arousal systems (e.g., cholinergic, dopaminergic, and orexinergic systems) relevant to emergence from general anesthesia. Furthermore, the effects of reversal agents have been found to be inconsistent across different general anesthetics, revealing differences in mechanisms among these drugs. The presynapse and glia probably also contribute to general anesthesia recovery alongside postsynaptic receptors. The next stage in the search for reversal agents will have to consider alternate mechanisms encompassing the tripartite synapse.

References

  1. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):322-7 [PMID: 9419374]
  2. Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4281-E4287 [PMID: 28484025]
  3. J Cell Comp Physiol. 1951 Feb;37(1):15-25 [PMID: 14824238]
  4. Anesthesiology. 1996 Apr;84(4):945-54 [PMID: 8638850]
  5. Nature. 1984 Sep 6-11;311(5981):56-7 [PMID: 6332278]
  6. FASEB J. 2018 Aug;32(8):4203-4213 [PMID: 29522375]
  7. Br J Anaesth. 2015 Nov;115(5):743-51 [PMID: 25935840]
  8. Anesthesiology. 2016 Oct;125(4):647-55 [PMID: 27496656]
  9. Aging (Albany NY). 2020 Apr 26;12(8):7262-7281 [PMID: 32335546]
  10. Anesthesiology. 2000 Sep;93(3):708-17 [PMID: 10969304]
  11. J Neurosci. 1992 Mar;12(3):1063-76 [PMID: 1312132]
  12. Nature. 1971 Jun 11;231(5302):368-71 [PMID: 4931002]
  13. Anesthesiology. 1978 Feb;48(2):104-10 [PMID: 655442]
  14. Br J Anaesth. 2021 Jan;126(1):265-278 [PMID: 33081972]
  15. Psychopharmacology (Berl). 1990;102(3):399-403 [PMID: 2251336]
  16. EBioMedicine. 2021 Mar;65:103272 [PMID: 33691246]
  17. Anesthesiology. 2009 Nov;111(5):1001-9 [PMID: 19809293]
  18. Front Neurosci. 2021 May 26;15:664410 [PMID: 34121993]
  19. Anesth Analg. 2009 Feb;108(2):491-5 [PMID: 19151277]
  20. Contemp Top Lab Anim Sci. 2000 Nov;39(6):39-42 [PMID: 11487251]
  21. Psychopharmacology (Berl). 2002 Oct;163(3-4):362-80 [PMID: 12373437]
  22. Anesthesiology. 2019 Mar;130(3):423-434 [PMID: 30707122]
  23. Nature. 1981 Jul 16;292(5820):248-51 [PMID: 7254317]
  24. Anesthesiology. 2018 Nov;129(5):912-920 [PMID: 30044241]
  25. Anesthesiology. 2017 Nov;127(5):824-837 [PMID: 28857763]
  26. eNeuro. 2020 Feb 28;7(1): [PMID: 32019872]
  27. Br J Anaesth. 2013 Apr;110(4):592-9 [PMID: 23213036]
  28. Anesthesiology. 2011 Oct;115(4):791-803 [PMID: 21934407]
  29. N Engl J Med. 2010 Dec 30;363(27):2638-50 [PMID: 21190458]
  30. J Physiol. 2011 Mar 1;589(Pt 5):1103-15 [PMID: 21173083]
  31. Br J Pharmacol. 2000 Apr;129(7):1465-73 [PMID: 10742303]
  32. Anesthesiology. 2004 Nov;101(5):1225-7 [PMID: 15505460]
  33. JAMA. 2010 Jul 28;304(4):443-51 [PMID: 20664045]
  34. Eur J Anaesthesiol. 2010 Nov;27(11):955-9 [PMID: 20864893]
  35. Anesth Analg. 2017 Mar;124(3):782-788 [PMID: 28098590]
  36. Nature. 1984 Aug 16-22;310(5978):599-601 [PMID: 6462249]
  37. Biochim Biophys Acta. 1995 May 24;1236(1):135-41 [PMID: 7540867]
  38. Mol Pharmacol. 1984 Jan;25(1):123-30 [PMID: 6546781]
  39. Anaesthesia. 2017 May;72(5):555-560 [PMID: 28272745]
  40. Int J Clin Exp Med. 2014 Mar 15;7(3):673-9 [PMID: 24753762]
  41. SAAD Dig. 2011 Jan;27:3-7 [PMID: 21323030]
  42. J Neurosci. 2023 Apr 5;43(14):2537-2551 [PMID: 36868857]
  43. Br J Pharmacol. 2006 Jan;147 Suppl 1:S72-81 [PMID: 16402123]
  44. J Neurosci. 1998 Jun 15;18(12):4705-21 [PMID: 9614245]
  45. J Clin Pharmacol. 2011 May;51(5):719-30 [PMID: 20547772]
  46. Brain Res. 1999 Sep 4;840(1-2):175-8 [PMID: 10517968]
  47. Anesth Prog. 2008 Summer;55(2):40-8 [PMID: 18547152]
  48. Can Anaesth Soc J. 1977 Nov;24(6):707-11 [PMID: 589507]
  49. Paediatr Anaesth. 1997;7(1):69-72 [PMID: 9041578]
  50. Neuron. 2013 Oct 30;80(3):675-90 [PMID: 24183019]
  51. Minerva Anestesiol. 2006 Oct;72(10):821-6 [PMID: 17006419]
  52. Am J Vet Res. 2003 Dec;64(12):1534-41 [PMID: 14672433]
  53. Anesth Analg. 1980 Oct;59(10):764-7 [PMID: 6999946]
  54. Br J Anaesth. 2009 Jul;103(1):108-14 [PMID: 19546202]
  55. BMC Neurosci. 2011 Nov 17;12:118 [PMID: 22094010]
  56. Br J Pharmacol. 1995 May;115(2):275-82 [PMID: 7670729]
  57. Neuroscience. 2003;121(4):855-63 [PMID: 14580935]
  58. Br J Anaesth. 1987 Apr;59(4):455-8 [PMID: 3105565]
  59. J Neurosci. 2020 Jan 15;40(3):605-618 [PMID: 31776211]
  60. Anesthesiology. 1997 Feb;86(2):428-39 [PMID: 9054261]
  61. J Vis Exp. 2013 Oct 16;(80):e51079 [PMID: 24192721]
  62. J Hered. 1985 Mar-Apr;76(2):89-94 [PMID: 3989271]
  63. Neuropharmacology. 2009 Dec;57(7-8):608-18 [PMID: 19761781]
  64. Front Cell Neurosci. 2014 Nov 03;8:362 [PMID: 25404894]
  65. J Neurophysiol. 2013 Feb;109(3):758-67 [PMID: 23136341]
  66. Anesthesiology. 2015 Feb;122(2):343-52 [PMID: 25296107]
  67. PLoS One. 2015 Jul 06;10(7):e0131914 [PMID: 26148114]
  68. Nat Neurosci. 2002 Oct;5(10):979-84 [PMID: 12195434]
  69. Front Pharmacol. 2021 May 18;12:668285 [PMID: 34084141]
  70. Anesthesiology. 2013 Jun;118(6):1264-75 [PMID: 23695090]
  71. Anesth Analg. 2012 Oct;115(4):789-96 [PMID: 22798527]
  72. J Neurosci. 2012 Sep 19;32(38):13062-75 [PMID: 22993424]
  73. Mol Pharmacol. 2003 Aug;64(2):373-81 [PMID: 12869642]
  74. Br J Anaesth. 2022 Jun;128(6):1019-1028 [PMID: 35164969]
  75. J Pharmacol Exp Ther. 2003 Mar;304(3):1188-96 [PMID: 12604696]
  76. J Child Neurol. 2016 Nov;31(13):1489-1494 [PMID: 27488955]
  77. Anesthesiology. 2013 Jan;118(1):30-9 [PMID: 23221866]
  78. Front Syst Neurosci. 2021 Nov 18;15:762096 [PMID: 34867222]
  79. J Clin Anesth. 1995 Feb;7(1):89-91 [PMID: 7772368]
  80. Exp Ther Med. 2015 Apr;9(4):1518-1522 [PMID: 25780462]
  81. Neuron. 2004 Feb 19;41(4):599-610 [PMID: 14980208]
  82. Anesth Analg. 1969 Jan-Feb;48(1):136-40 [PMID: 5812547]
  83. Neuropeptides. 2016 Aug;58:7-14 [PMID: 26919917]
  84. Br J Clin Pharmacol. 1991 Feb;31(2):160-5 [PMID: 1675577]
  85. Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11959-64 [PMID: 26351670]
  86. J Neurosurg Anesthesiol. 2016 Jul;28(3):250-5 [PMID: 26274626]
  87. Elife. 2021 May 10;10: [PMID: 33970101]
  88. ACS Chem Neurosci. 2015 Jun 17;6(6):927-35 [PMID: 25799399]
  89. Anesthesiology. 2020 Jul;133(1):133-144 [PMID: 32282426]
  90. Injury. 2022 Jan;53(1):37-43 [PMID: 34802698]
  91. Anesth Analg. 2006 Jul;103(1):203-6, table of contents [PMID: 16790654]
  92. J Clin Anesth. 2015 Jun;27(4):353-60 [PMID: 25912729]
  93. Curr Neuropharmacol. 2022;20(1):5-15 [PMID: 33588730]
  94. Br J Pharmacol. 2005 Jan;144(1):59-70 [PMID: 15644869]
  95. Local Reg Anesth. 2020 Nov 05;13:195-206 [PMID: 33177867]
  96. Cell Rep. 2018 Jan 9;22(2):427-440 [PMID: 29320738]
  97. Bioessays. 2014 Apr;36(4):372-81 [PMID: 24449137]
  98. Anesth Analg. 2016 Nov;123(5):1210-1219 [PMID: 26991753]
  99. Anesth Analg. 1979 Nov-Dec;58(6):528-30 [PMID: 574742]
  100. Biochim Biophys Acta Biomembr. 2018 Oct;1860(10):2145-2153 [PMID: 29679540]
  101. J Neurosurg Anesthesiol. 2020 Jul;32(3):190-192 [PMID: 32349048]
  102. J Neurosci. 2011 Jul 6;31(27):10067-75 [PMID: 21734299]
  103. ACS Chem Neurosci. 2021 Jan 6;12(1):176-183 [PMID: 33355437]
  104. Anesthesiology. 1997 Apr;86(4):866-74 [PMID: 9105231]
  105. Curr Biol. 2023 Jun 5;33(11):2187-2200.e6 [PMID: 37167975]
  106. Br J Anaesth. 2013 Apr;110(4):646-53 [PMID: 23213035]
  107. Can Anaesth Soc J. 1975 Jan;22(1):111-3 [PMID: 1109700]
  108. Nature. 1975 Oct 30;257(5529):811-3 [PMID: 241941]
  109. Physiol Chem Phys. 1982;14(2):157-64 [PMID: 7184036]
  110. Acta Anaesthesiol Scand. 1995 Apr;39(3):299-301 [PMID: 7793204]
  111. J Neurophysiol. 2014 Mar;111(6):1331-40 [PMID: 24375022]
  112. J Pharmacol Exp Ther. 2006 Jan;316(1):216-23 [PMID: 16174800]
  113. Anesthesiology. 2007 Aug;107(2):264-72 [PMID: 17667571]
  114. Physiol Behav. 1971 May;6(5):619-21 [PMID: 5149455]
  115. Protein Cell. 2019 Sep;10(9):688-693 [PMID: 31028590]
  116. Anesthesiology. 1972 Apr;36(4):357-63 [PMID: 5020645]
  117. Neuropeptides. 2009 Jun;43(3):179-85 [PMID: 19464733]
  118. Br J Pharmacol. 2003 Mar;138(5):883-93 [PMID: 12642390]
  119. Cell. 1998 Feb 20;92(4):573-85 [PMID: 9491897]
  120. Anesthesiology. 2007 Dec;107(6):971-82 [PMID: 18043066]
  121. Curr Biol. 2018 Jul 9;28(13):2145-2152.e5 [PMID: 29937348]
  122. Nature. 1993 Jul 1;364(6432):82-4 [PMID: 8316305]
  123. Masui. 2008 Jun;57(6):748-51 [PMID: 18546908]
  124. Anesth Analg. 1970 Nov-Dec;49(6):924-34 [PMID: 5534693]
  125. Anesthesiology. 2015 May;122(5):1060-74 [PMID: 25738637]
  126. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1309-14 [PMID: 18195361]
  127. Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):E3377-86 [PMID: 23129622]
  128. Can J Anaesth. 1997 Nov;44(11):1148-51 [PMID: 9398952]
  129. Cochrane Database Syst Rev. 2009 Oct 07;(4):CD007362 [PMID: 19821409]
  130. Anesthesiology. 2019 Sep;131(3):555-568 [PMID: 31356232]
  131. Sci Rep. 2016 Jul 20;6:29874 [PMID: 27435513]
  132. Anesthesiology. 1998 Sep;89(3):574-84 [PMID: 9743392]
  133. Br J Anaesth. 2021 Oct;127(4):587-599 [PMID: 34384592]
  134. J Neurophysiol. 2017 Sep 1;118(3):1591-1597 [PMID: 28659466]
  135. J Pharmacol Exp Ther. 2022 Dec;383(3):238-245 [PMID: 36167415]
  136. BMC Geriatr. 2020 Feb 3;20(1):40 [PMID: 32013872]
  137. PLoS One. 2010 Jul 30;5(7):e11903 [PMID: 20689589]
  138. J Anesth. 2009;23(4):483-8 [PMID: 19921354]
  139. Anesth Analg. 2000 Sep;91(3):758-9 [PMID: 10960415]
  140. BMC Anesthesiol. 2023 Feb 1;23(1):39 [PMID: 36721095]
  141. Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10740-E10747 [PMID: 30348769]
  142. Vet Anaesth Analg. 2011 Nov;38(6):536-43 [PMID: 21988808]
  143. Br J Pharmacol. 2019 Dec;176(24):4760-4772 [PMID: 31454409]
  144. Clin Exp Pharmacol Physiol. 2021 Nov;48(11):1454-1468 [PMID: 34309890]
  145. Anesthesiology. 2016 Oct;125(4):611-4 [PMID: 27496655]
  146. Pharmacology. 2007;79(4):236-42 [PMID: 17435392]
  147. J Clin Anesth. 1993 May-Jun;5(3):194-203 [PMID: 8100428]
  148. Anesthesiology. 1997 Apr;86(4):859-65 [PMID: 9105230]
  149. Anesthesiology. 1976 May;44(5):416-9 [PMID: 1267207]
  150. Handb Exp Pharmacol. 2009;(193):471-534 [PMID: 19639292]
  151. Lancet. 2014 Mar 8;383(9920):911-22 [PMID: 23992774]
  152. Anesth Analg. 2004 May;98(5):1336-40, table of contents [PMID: 15105211]
  153. Front Aging Neurosci. 2022 Jan 11;13:802582 [PMID: 35087395]
  154. Anesthesiology. 2018 Oct;129(4):733-743 [PMID: 30004907]
  155. J Parkinsons Dis. 2015;5(4):699-713 [PMID: 26407041]
  156. Anesthesiology. 2012 May;116(5):998-1005 [PMID: 22446983]
  157. Proc Natl Acad Sci U S A. 2021 Feb 2;118(5): [PMID: 33495322]
  158. Neuroscience. 2010 Feb 3;165(3):934-43 [PMID: 19909789]
  159. Can J Anaesth. 1995 Nov;42(11):1056-8 [PMID: 8590498]
  160. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2479-84 [PMID: 10051668]
  161. J Appl Physiol Respir Environ Exerc Physiol. 1979 Apr;46(4):756-65 [PMID: 457554]
  162. Anesthesiology. 2011 Oct;115(4):733-42 [PMID: 21804378]
  163. Paediatr Anaesth. 2012 Apr;22(4):341-4 [PMID: 21988202]
  164. Eur J Anaesthesiol. 2014 Aug;31(8):423-9 [PMID: 24296853]
  165. Science. 1950 Jul 21;112(2899):91-2 [PMID: 15442245]

Grants

  1. R01 GM126155/NIGMS NIH HHS

MeSH Term

Animals
Humans
Anesthetics, General
Anesthesia, General
Caffeine
Arousal
Dopamine

Chemicals

Anesthetics, General
Caffeine
Dopamine

Word Cloud

Created with Highcharts 10.0.0generalanesthesiaagentsreversalmechanismsrecoveryanestheticsstudyidentifyReversalunderstandingsearchsystemsworkremainstopicongoingparallelfieldresearchsoughtmethodsreverseshortenpatients'timepotentiallyreduceriskpostoperativecomplicationsincompletehamperedpursuitNeverthelessfurtheredunderlyingpotentialhighlightedimportancerigorouscriteriaassessanimalmodelshelpedkeyarousalegcholinergicdopaminergicorexinergicrelevantemergenceFurthermoreeffectsfoundinconsistentacrossdifferentrevealingdifferencesamongdrugspresynapsegliaprobablyalsocontributealongsidepostsynapticreceptorsnextstagewillconsideralternateencompassingtripartitesynapseTimeWakeUp!OngoingSearchGeneralAnestheticAgents

Similar Articles

Cited By