Coral thermal stress and bleaching enrich and restructure reef microbial communities via altered organic matter exudation.

Wesley J Sparagon, Milou G I Arts, Zachary A Quinlan, Linda Wegley Kelly, Irina Koester, Jacqueline Comstock, Jessica A Bullington, Craig A Carlson, Pieter C Dorrestein, Lihini I Aluwihare, Andreas F Haas, Craig E Nelson
Author Information
  1. Wesley J Sparagon: Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA. sparagon@hawaii.edu. ORCID
  2. Milou G I Arts: Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands. ORCID
  3. Zachary A Quinlan: Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA.
  4. Linda Wegley Kelly: Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA.
  5. Irina Koester: Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA.
  6. Jacqueline Comstock: Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA.
  7. Jessica A Bullington: Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
  8. Craig A Carlson: Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA. ORCID
  9. Pieter C Dorrestein: University of California San Diego, San Diego, USA.
  10. Lihini I Aluwihare: Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA.
  11. Andreas F Haas: Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands.
  12. Craig E Nelson: Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.

Abstract

Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.

References

  1. J Bacteriol. 1972 Apr;110(1):402-29 [PMID: 4552999]
  2. Nature. 2006 Apr 27;440(7088):1186-9 [PMID: 16641995]
  3. Appl Environ Microbiol. 2011 Jun;77(12):4055-65 [PMID: 21515719]
  4. Glob Chang Biol. 2021 Jun;27(12):2728-2743 [PMID: 33784420]
  5. ISME J. 2022 Oct;16(10):2360-2372 [PMID: 35804052]
  6. PLoS Comput Biol. 2015 May 07;11(5):e1004226 [PMID: 25950956]
  7. Trends Microbiol. 2012 Dec;20(12):621-8 [PMID: 22944243]
  8. Glob Chang Biol. 2022 Feb;28(4):1342-1358 [PMID: 34908214]
  9. Annu Rev Microbiol. 2016 Sep 8;70:317-40 [PMID: 27482741]
  10. Nat Rev Microbiol. 2019 Sep;17(9):557-567 [PMID: 31263246]
  11. ISME J. 2018 Sep;12(9):2238-2251 [PMID: 29884827]
  12. Environ Microbiome. 2021 Aug 17;16(1):15 [PMID: 34404489]
  13. Nat Biotechnol. 2012 Oct;30(10):918-20 [PMID: 23051804]
  14. Sci Rep. 2016 Dec 21;6:39666 [PMID: 28000782]
  15. Nat Microbiol. 2016 Apr 25;1(6):16042 [PMID: 27572833]
  16. Environ Microbiol. 2012 Jun;14(6):1500-16 [PMID: 22507662]
  17. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  18. Proc Biol Sci. 2016 Aug 17;283(1836): [PMID: 27512146]
  19. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  20. Proc Natl Acad Sci U S A. 2022 Feb 1;119(5): [PMID: 35101918]
  21. Sci Total Environ. 2022 Jul 10;829:154075 [PMID: 35218838]
  22. Metabolites. 2021 Dec 26;12(1): [PMID: 35050140]
  23. Environ Microbiol. 2009 Aug;11(8):2148-63 [PMID: 19397678]
  24. PeerJ. 2013 Jul 16;1:e108 [PMID: 23882445]
  25. PeerJ. 2017 Jun 21;5:e3423 [PMID: 28649468]
  26. Sci Rep. 2016 Dec 06;6:38402 [PMID: 27922080]
  27. Nat Commun. 2017 Oct 30;8(1):1188 [PMID: 29084957]
  28. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  29. Sci Rep. 2021 Dec 7;11(1):23546 [PMID: 34876599]
  30. PLoS One. 2012;7(9):e43233 [PMID: 22970122]
  31. Microb Ecol. 2014 Apr;67(3):540-52 [PMID: 24477921]
  32. Environ Microbiol. 2019 Feb;21(2):541-556 [PMID: 30461157]
  33. ISME J. 2015 Aug;9(8):1764-77 [PMID: 25615440]
  34. ISME J. 2021 Jun;15(6):1628-1640 [PMID: 33564111]
  35. Nat Ecol Evol. 2021 Apr;5(4):495-503 [PMID: 33558733]
  36. J Exp Biol. 2003 Sep;206(Pt 18):3149-57 [PMID: 12909696]
  37. Front Microbiol. 2016 Mar 21;7:316 [PMID: 27047453]
  38. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  39. Commun Biol. 2018 Nov 5;1:184 [PMID: 30417121]
  40. PeerJ. 2017 Aug 15;5:e3666 [PMID: 28828261]
  41. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  42. PLoS One. 2011;6(11):e27973 [PMID: 22125645]
  43. Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3656-3662 [PMID: 32015111]
  44. ISME J. 2021 Dec;15(12):3668-3682 [PMID: 34168314]
  45. Ecol Lett. 2006 Jul;9(7):835-45 [PMID: 16796574]
  46. FEMS Microbiol Rev. 2017 Jul 1;41(4):575-595 [PMID: 28486655]
  47. Proc Biol Sci. 2012 Apr 22;279(1733):1655-64 [PMID: 22090385]
  48. Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16420-7 [PMID: 20807744]
  49. Environ Microbiol. 2022 Sep;24(9):4193-4208 [PMID: 35691616]
  50. Appl Environ Microbiol. 2005 Dec;71(12):8228-35 [PMID: 16332807]
  51. Nat Commun. 2019 Apr 12;10(1):1691 [PMID: 30979882]
  52. Environ Microbiol Rep. 2011 Dec;3(6):651-60 [PMID: 23761353]
  53. PLoS One. 2017 Nov 16;12(11):e0188319 [PMID: 29145488]
  54. ISME J. 2011 Aug;5(8):1374-87 [PMID: 21390080]
  55. Nat Rev Microbiol. 2007 Oct;5(10):782-91 [PMID: 17853906]
  56. Environ Microbiol. 2012 Jan;14(1):191-206 [PMID: 21981709]
  57. J Exp Biol. 2012 Oct 1;215(Pt 19):3467-77 [PMID: 22956249]
  58. Appl Environ Microbiol. 2011 Nov;77(21):7490-8 [PMID: 21742918]
  59. BMC Bioinformatics. 2010 Jul 23;11:395 [PMID: 20650010]
  60. ISME J. 2014 May;8(5):999-1007 [PMID: 24335830]
  61. ISME J. 2013 May;7(5):962-79 [PMID: 23303369]

Grants

  1. P20 GM125508/NIGMS NIH HHS

MeSH Term

Animals
Anthozoa
Coral Reefs
Hot Temperature
Water

Chemicals

Water

Word Cloud

Created with Highcharts 10.0.0coralsbleachingstresswatercolumnDOMexudationthermalmicrobialCoralreefsreefbleachedorganicmattergrowthhealthyalteredcoralwell-documentedincreasinglywidespreadphenomenonacrossglobeyetrelativelylittleresearchimplicationsmicrobiologybiogeochemistrymesocosmheatingexperimentbottleincubationcomparedunbleachedalterdissolvedresponsesubsequenteffectscommunitystructureThermaltripledfluxrelativeambient DOMexudatesstressedheatedand/orpreviouslycompositionallydistinctsignificantlyincreasedbacterioplanktonenrichingcopiotrophsputativepathogensTogetherresultsdemonstrateimpactsshort-termlong-termmayextenddrivingfeedbacksinfluencerespondrecovermasseventsenrichrestructurecommunitiesvia

Similar Articles

Cited By