Dose-dependent changes in orientation amplitude maps in the cat visual cortex after propofol bolus injections.

Svetlana I Shumikhina, Sergei A Kozhukhov, Igor V Bondar
Author Information
  1. Svetlana I Shumikhina: Functional Neurocytology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova Street, 117485 Moscow, Russian Federation.
  2. Sergei A Kozhukhov: Physiology of Sensory Systems, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova Street, 117485 Moscow, Russian Federation.
  3. Igor V Bondar: Physiology of Sensory Systems, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova Street, 117485 Moscow, Russian Federation.

Abstract

A general intravenous anesthetic propofol (2,6-diisopropylphenol) is widely used in clinical, veterinary practice and animal experiments. It activates gamma- aminobutyric acid (GABAa) receptors. Though the cerebral cortex is one of the major targets of propofol action, no study of dose dependency of propofol action on cat visual cortex was performed yet. Also, no such investigation was done until now using intrinsic signal optical imaging. Here, we report for the first time on the dependency of optical signal in the visual cortex (area 17/area 18) on the propofol dose. Optical imaging of intrinsic responses to visual stimuli was performed in cats before and after propofol bolus injections at different doses on the background of continuous propofol infusion. Orientation amplitude maps were recorded. We found that amplitude of optical signal significantly decreased after a bolus dose of propofol. The effect was dose- and time-dependent producing stronger suppression of optical signal under the highest bolus propofol doses and short time interval after injection. In each hemisphere, amplitude at cardinal and oblique orientations decreased almost equally. However, surprisingly, amplitude at cardinal orientations in the ipsilateral hemisphere was depressed stronger than in contralateral cortex at most time intervals. As the magnitude of optical signal represents the strength of orientation tuned component, these our data give new insights on the mechanisms of generation of orientation selectivity. Our results also provide new data toward understanding brain dynamics under anesthesia and suggest a recommendation for conducting intrinsic signal optical imaging experiments on cortical functioning under propofol anesthesia.

Keywords

References

  1. Neuroimage. 2007 Jul 1;36(3):804-21 [PMID: 17475512]
  2. Front Syst Neurosci. 2019 Aug 14;13:36 [PMID: 31474839]
  3. Vet J. 2014 Apr;200(1):157-61 [PMID: 24582061]
  4. J Neurophysiol. 2003 Dec;90(6):3912-20 [PMID: 12930813]
  5. Ross Fiziol Zh Im I M Sechenova. 2013 Apr;99(4):453-63 [PMID: 23862385]
  6. Neuroimage. 2013 Dec;83:581-92 [PMID: 23851326]
  7. Neuron. 2001 Dec 20;32(6):1181-92 [PMID: 11754846]
  8. Neuroimage. 2007 Oct 15;38(1):3-4 [PMID: 17765574]
  9. Neurosci Lett. 2001 Oct 5;311(3):177-80 [PMID: 11578823]
  10. Trends Neurosci. 2015 Aug;38(8):475-85 [PMID: 26209463]
  11. Neuroscience. 2007 Mar 2;145(1):377-83 [PMID: 17223276]
  12. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6082-6 [PMID: 2117272]
  13. Clin Tech Small Anim Pract. 1999 Feb;14(1):1-9 [PMID: 10193040]
  14. J Neurosurg Pediatr. 2013 May;11(5):543-6 [PMID: 23473057]
  15. Neural Comput. 2000 Nov;12(11):2573-95 [PMID: 11110128]
  16. Vis Neurosci. 2003 Jan-Feb;20(1):85-96 [PMID: 12699086]
  17. Anesth Analg. 2003 Dec;97(6):1784-1788 [PMID: 14633560]
  18. Nature. 2003 Jun 26;423(6943):986-90 [PMID: 12827202]
  19. Br J Anaesth. 1981 Mar;53(3):267-72 [PMID: 6970586]
  20. Neurosci Lett. 2003 Feb 20;338(1):77-81 [PMID: 12565144]
  21. Vet Rec. 1989 Jan 14;124(2):31-3 [PMID: 2783794]
  22. Brain Connect. 2015 Feb;5(1):10-22 [PMID: 24702200]
  23. Anesthesiology. 2001 Dec;95(6):1460-6 [PMID: 11748406]
  24. Eur J Neurosci. 2004 Oct;20(7):1906-14 [PMID: 15380012]
  25. J Neurosci. 1997 Dec 1;17(23):9270-84 [PMID: 9364073]
  26. Vis Neurosci. 1992 Jul;9(1):1-19 [PMID: 1378754]
  27. Vet Anaesth Analg. 2006 Jan;33(1):2-7 [PMID: 16412126]
  28. J Neurosurg. 2010 Feb;112(2):285-94 [PMID: 19630493]
  29. Nature. 2003 Oct 30;425(6961):954-6 [PMID: 14586468]
  30. Vis Neurosci. 2004 Jan-Feb;21(1):39-51 [PMID: 15137580]
  31. Cereb Cortex. 2000 Jun;10(6):593-601 [PMID: 10859137]
  32. Annu Rev Vis Sci. 2016 Oct 14;2:85-107 [PMID: 28532362]
  33. J S Afr Vet Assoc. 1991 Sep;62(3):118-23 [PMID: 1770481]
  34. J Neurosci. 1993 Oct;13(10):4157-80 [PMID: 8410182]
  35. Nature. 1974 May 24;249(455):375-7 [PMID: 4842746]
  36. Vet Anaesth Analg. 2015 Sep;42(5):472-83 [PMID: 25327817]
  37. J Physiol. 2006 Aug 1;574(Pt 3):731-50 [PMID: 16709635]
  38. J Physiol. 1962 Jan;160:106-54 [PMID: 14449617]
  39. Anesthesiology. 1997 Feb;86(2):428-39 [PMID: 9054261]
  40. J Feline Med Surg. 2012 Aug;14(8):516-26 [PMID: 22366290]
  41. Vet Rec. 1990 Jun 23;126(25):617-20 [PMID: 2378046]
  42. J Physiol. 1979 Nov;296:61P-62P [PMID: 529134]
  43. Neuron. 2003 May 22;38(4):529-45 [PMID: 12765606]
  44. J Physiol. 1987 Mar;384:619-32 [PMID: 3656156]
  45. Anesthesiology. 2000 Apr;92(4):1067-73 [PMID: 10754627]
  46. Mol Pharmacol. 2003 Aug;64(2):373-81 [PMID: 12869642]
  47. Eur J Neurosci. 1995 Sep 1;7(9):1973-88 [PMID: 8528473]
  48. Science. 1999 Nov 19;286(5444):1555-8 [PMID: 10567261]
  49. Vet Clin North Am Small Anim Pract. 1999 May;29(3):747-78 [PMID: 10332821]
  50. Curr Pharm Des. 2004;10(29):3639-49 [PMID: 15579060]
  51. Science. 1968 Jan 19;159(3812):308-10 [PMID: 5634497]
  52. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1272-6 [PMID: 265570]
  53. Curr Neuropharmacol. 2020;18(10):936-965 [PMID: 32106800]
  54. Postgrad Med J. 1985;61 Suppl 3:35-7 [PMID: 3877291]
  55. Eur J Neurosci. 2008 May;27(10):2773-80 [PMID: 18489580]
  56. Vis Neurosci. 1990 Aug;5(2):205-11 [PMID: 2278945]
  57. Curr Opin Neurobiol. 2010 Jun;20(3):340-6 [PMID: 20307968]
  58. J Neurophysiol. 2005 Dec;94(6):3872-83 [PMID: 16093340]
  59. PLoS One. 2015 Apr 15;10(4):e0123287 [PMID: 25875024]
  60. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11559-63 [PMID: 1763070]
  61. Sheng Li Xue Bao. 2000 Oct;52(5):431-4 [PMID: 11941401]
  62. Br J Anaesth. 1991 Apr;66(4):490-5 [PMID: 2025477]
  63. Physiol Rev. 2011 Apr;91(2):555-602 [PMID: 21527732]
  64. J Neurophysiol. 2003 Jul;90(1):204-17 [PMID: 12611956]
  65. J Neurosci. 2000 Nov 15;20(22):8504-14 [PMID: 11069958]
  66. J Neurophysiol. 2005 Jan;93(1):223-36 [PMID: 15282261]
  67. Eur J Pharmacol. 2011 Feb 25;653(1-3):16-20 [PMID: 21114997]
  68. J Vet Pharmacol Ther. 2003 Oct;26(5):369-76 [PMID: 14633190]
  69. J Neurochem. 1990 Dec;55(6):2135-8 [PMID: 2172469]
  70. Neuroscience. 2018 Mar 15;374:49-60 [PMID: 29391133]
  71. Neurosci Lett. 2016 Mar 11;616:93-7 [PMID: 26828304]
  72. Mol Cell Neurosci. 2011 Dec;48(4):288-97 [PMID: 21627990]
  73. J Comp Neurol. 1974 Jun 15;155(4):377-94 [PMID: 4847732]
  74. J Neurosci Methods. 2004 Jun 15;136(1):1-21 [PMID: 15126041]
  75. Nature. 1995 Jun 29;375(6534):780-4 [PMID: 7596409]
  76. Protein Cell. 2019 Sep;10(9):688-693 [PMID: 31028590]
  77. J Vet Med Sci. 2003 May;65(5):641-3 [PMID: 12808220]
  78. Cereb Cortex. 2023 Jul 24;33(15):9303-9312 [PMID: 37279562]
  79. Anaesthesia. 1984 Dec;39(12):1168-71 [PMID: 6335003]
  80. J Pharmacol Exp Ther. 1983 Feb;224(2):408-14 [PMID: 6296361]
  81. Brain Res. 1981 Mar 9;208(1):203-8 [PMID: 7470923]
  82. J Nippon Med Sch. 2017;84(4):165-169 [PMID: 28978896]
  83. Vet Rec. 2010 Jul 17;167(3):85-9 [PMID: 20643885]
  84. Drugs. 1988 Apr;35(4):334-72 [PMID: 3292208]
  85. Nature. 1986 Nov 27-Dec 3;324(6095):361-4 [PMID: 3785405]
  86. J Physiol. 1978 Oct;283:101-20 [PMID: 722570]
  87. Neurosci Lett. 1993 Oct 1;160(2):205-8 [PMID: 8247355]
  88. J Neurosci. 2006 Nov 15;26(46):11821-32 [PMID: 17108155]
  89. Acta Anaesthesiol Scand. 2005 Jul;49(6):784-91 [PMID: 15954960]
  90. Vet Anaesth Analg. 2013 Nov;40(6):584-9 [PMID: 23889781]
  91. Trends Neurosci. 1996 Jul;19(7):272-7 [PMID: 8799969]
  92. Br J Anaesth. 1985 Aug;57(8):736-42 [PMID: 3874642]
  93. J Neurosci Methods. 1991 Feb;36(2-3):127-37 [PMID: 1905769]
  94. Science. 2010 Nov 19;330(6007):1113-6 [PMID: 21051599]
  95. Neuroimage. 1996 Dec;4(3 Pt 1):183-93 [PMID: 9345508]
  96. Anesthesiology. 1999 Aug;91(2):512-20 [PMID: 10443615]
  97. Anesthesiology. 1999 Jul;91(1):167-78 [PMID: 10422942]
  98. Can Vet J. 1999 Dec;40(12):867-70 [PMID: 10646062]
  99. J Physiol. 1968 Sep;198(1):237-50 [PMID: 16992316]
  100. Drugs. 1987 Jul;34(1):98-135 [PMID: 3308413]
  101. Science. 1990 Jul 27;249(4967):417-20 [PMID: 2165630]
  102. Nature. 1991 Oct 3;353(6343):429-31 [PMID: 1896085]
  103. Exp Brain Res. 1981;42(2):127-45 [PMID: 6167459]
  104. Eur J Neurosci. 2006 Jan;23(2):465-80 [PMID: 16420453]
  105. Neuroscience. 2018 May 21;379:77-92 [PMID: 29550335]
  106. J Neurosci. 2013 Aug 14;33(33):13326-43 [PMID: 23946391]
  107. Neurosci Lett. 2008 May 23;437(1):65-70 [PMID: 18420348]
  108. Neuroscience. 2016 Dec 17;339:548-560 [PMID: 27746347]
  109. Epilepsia. 2005 May;46(5):624-35 [PMID: 15857426]
  110. J Neurosci. 1994 May;14(5 Pt 1):2545-68 [PMID: 8182427]
  111. J Comp Neurol. 1987 Jan 15;255(3):401-15 [PMID: 3819021]
  112. Emerg Med J. 2007 Jul;24(7):459-61 [PMID: 17582032]
  113. Eur J Neurosci. 2014 Jun;39(11):1845-65 [PMID: 24628861]
  114. Br J Pharmacol. 1988 Nov;95(3):939-49 [PMID: 2850066]
  115. Annu Rev Neurosci. 2000;23:441-71 [PMID: 10845071]
  116. J Neurosci. 2016 Jul 20;36(29):7718-26 [PMID: 27445148]
  117. J Physiol. 2017 Jan 1;595(1):321-339 [PMID: 27416731]
  118. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9869-74 [PMID: 8790423]
  119. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2621-3 [PMID: 9482936]

Word Cloud

Created with Highcharts 10.0.0propofolopticalsignalcortexamplitudevisualimagingbolusdoseintrinsictimeorientationexperimentsactiondependencycatperformedinjectionsdosesOrientationmapsdecreasedstrongerhemispherecardinalorientationsdatanewselectivityanesthesiageneralintravenousanesthetic26-diisopropylphenolwidelyusedclinicalveterinarypracticeanimalactivatesgamma-aminobutyricacidGABAareceptorsThoughcerebralonemajortargetsstudyyetAlsoinvestigationdonenowusingreportfirstarea17/area18Opticalresponsesstimulicatsdifferentbackgroundcontinuousinfusionrecordedfoundsignificantlyeffectdose-time-dependentproducingsuppressionhighestshortintervalinjectionobliquealmostequallyHoweversurprisinglyipsilateraldepressedcontralateralintervalsmagnituderepresentsstrengthtunedcomponentgiveinsightsmechanismsgenerationresultsalsoprovidetowardunderstandingbraindynamicssuggestrecommendationconductingcorticalfunctioningDose-dependentchangesAnesthesiaIntrinsicPlasticityPropofol

Similar Articles

Cited By