Self-assembling ferritin nanoplatform for the development of infectious hematopoietic necrosis virus vaccine.

Sohrab Ahmadivand, Zeljka Krpetic, Merce Márquez Martínez, Marlid Garcia-Ordoñez, Nerea Roher, Dušan Palić
Author Information
  1. Sohrab Ahmadivand: Faculty of Veterinary Medicine, Ludwig-Maximilians University Munich, Munich, Germany.
  2. Zeljka Krpetic: Biomedical Research Centre, School of Science Engineering and Environment, University of Salford, Salford, United Kingdom.
  3. Merce Márquez Martínez: Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain.
  4. Marlid Garcia-Ordoñez: Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain.
  5. Nerea Roher: Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain.
  6. Dušan Palić: Faculty of Veterinary Medicine, Ludwig-Maximilians University Munich, Munich, Germany.

Abstract

Self-assembling protein nanoparticles are used as a novel vaccine design platform to improve the stability and immunogenicity of safe subunit vaccines, while providing broader protection against viral infections. Infectious Hematopoietic Necrosis virus (IHNV) is the causative agent of the WOAH-listed IHN diseases for which there are currently no therapeutic treatments and no globally available commercial vaccine. In this study, by genetically fusing the virus glycoprotein to the H. pylori ferritin as a scaffold, we constructed a self-assembling IHNV nanovaccine (FerritVac). Despite the introduction of an exogenous fragment, the FerritVac NPs show excellent stability same as ferritin NPs under different storage, pH, and temperature conditions, mimicking the harsh gastrointestinal condition of the virus main host (trout). MTT viability assays showed no cytotoxicity of FerritVac or ferritin NPs in zebrafish cell culture (ZFL cells) incubated with different doses of up to 100 µg/mL for 14 hours. FerritVac NPs also upregulated expression of innate antiviral immunity, IHNV, and other fish rhabdovirus infection gene markers (mx, vig1, ifit5, and isg-15) in the macrophage cells of the host. In this study, we demonstrate the development of a soluble recombinant glycoprotein of IHNV in the E. coli system using the ferritin self-assembling nanoplatform, as a biocompatible, stable, and effective foundation to rescue and produce soluble protein and enable oral administration and antiviral induction for development of a complete IHNV vaccine. This self-assembling protein nanocages as novel vaccine approach offers significant commercial potential for non-mammalian and enveloped viruses.

Keywords

References

  1. Sci Rep. 2019 Nov 28;9(1):17755 [PMID: 31780685]
  2. Nat Commun. 2020 May 11;11(1):2337 [PMID: 32393750]
  3. Sci Rep. 2015 Aug 04;5:12501 [PMID: 26238798]
  4. Dis Aquat Organ. 2020 Apr 30;139:25-33 [PMID: 32351234]
  5. Phys Biol. 2011 Aug;8(4):046002 [PMID: 21508440]
  6. Vet Immunol Immunopathol. 2014 Jan 15;157(1-2):87-96 [PMID: 24252246]
  7. Dev Comp Immunol. 2012 Feb;36(2):378-84 [PMID: 21893091]
  8. Nat Immunol. 2004 Jul;5(7):730-7 [PMID: 15208624]
  9. Viruses. 2022 Aug 06;14(8): [PMID: 36016354]
  10. Sci Immunol. 2020 May 1;5(47): [PMID: 32358170]
  11. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  12. Front Immunol. 2018 Jul 18;9:1652 [PMID: 30072996]
  13. Fish Shellfish Immunol. 2013 Dec;35(6):1751-8 [PMID: 24184267]
  14. Nature. 2013 Jul 4;499(7456):102-6 [PMID: 23698367]
  15. Fish Shellfish Immunol. 2020 Oct;105:62-70 [PMID: 32645516]
  16. J Nanobiotechnology. 2019 Jan 22;17(1):13 [PMID: 30670042]
  17. J Exp Biol. 2006 Oct;209(Pt 19):3719-28 [PMID: 16985189]
  18. Biomacromolecules. 2011 May 9;12(5):1629-40 [PMID: 21446722]
  19. Nat Rev Immunol. 2008 Jul;8(7):559-68 [PMID: 18575461]
  20. Virus Res. 2017 Feb 2;229:17-23 [PMID: 28012997]
  21. Viruses. 2022 Jul 15;14(7): [PMID: 35891526]
  22. Sci Rep. 2020 Oct 23;10(1):18149 [PMID: 33097791]
  23. Microb Pathog. 2020 Dec;149:104321 [PMID: 32534183]
  24. Sci Transl Med. 2022 Feb 16;14(632):eabi5735 [PMID: 34914540]
  25. Microorganisms. 2019 Nov 16;7(11): [PMID: 31744151]
  26. PLoS One. 2011;6(10):e25816 [PMID: 21991361]
  27. J Mol Biol. 2013 Dec 13;425(24):4904-20 [PMID: 24075867]
  28. Virusdisease. 2014 Jan;25(1):1-17 [PMID: 24426306]
  29. PeerJ. 2019 Jul 16;7:e7151 [PMID: 31341728]
  30. J Virol. 1991 Mar;65(3):1611-5 [PMID: 1704930]
  31. Dis Aquat Organ. 1999 Apr 15;36(1):67-72 [PMID: 10349553]
  32. Fish Shellfish Immunol. 2019 Jul;90:210-214 [PMID: 31039441]
  33. Biomaterials. 2016 Nov;107:102-14 [PMID: 27614162]
  34. Vaccines (Basel). 2021 Jan 13;9(1): [PMID: 33451123]
  35. Vaccine. 2020 Jul 31;38(35):5647-5652 [PMID: 32624251]
  36. Dev Comp Immunol. 2020 Oct;111:103746 [PMID: 32445651]
  37. Pharmaceutics. 2021 Oct 05;13(10): [PMID: 34683914]
  38. Mol Immunol. 2017 May;85:196-204 [PMID: 28285182]
  39. Dev Comp Immunol. 2017 Sep;74:178-189 [PMID: 28479343]
  40. Front Cell Infect Microbiol. 2013 Mar 25;3:13 [PMID: 23532930]
  41. Vaccines (Basel). 2023 Apr 10;11(4): [PMID: 37112733]
  42. Pathogens. 2020 Sep 24;9(10): [PMID: 32987803]
  43. J Pharm Pharmacol. 2015 Mar;67(3):319-28 [PMID: 25556638]
  44. Front Immunol. 2021 Aug 16;12:709910 [PMID: 34484211]
  45. Viruses. 2021 Mar 10;13(3): [PMID: 33802100]
  46. Front Immunol. 2018 May 17;9:1093 [PMID: 29868035]
  47. Gen Comp Endocrinol. 2016 Jan 1;225:235-241 [PMID: 26027538]
  48. Retrovirology. 2015 Sep 26;12:82 [PMID: 26410741]
  49. J Nanobiotechnology. 2022 Jan 10;20(1):32 [PMID: 35012571]
  50. J Virol. 2013 Sep;87(18):10025-36 [PMID: 23824820]

MeSH Term

Animals
Infectious hematopoietic necrosis virus
Ferritins
Escherichia coli
Zebrafish
Viral Vaccines
Glycoproteins

Chemicals

Ferritins
Viral Vaccines
Glycoproteins

Word Cloud

Created with Highcharts 10.0.0vaccineIHNVproteinvirusferritinself-assemblingFerritVacNPsstabilitycellsdevelopmentSelf-assemblingnanoparticlesnovelcommercialstudyglycoproteinFerritindifferenthostZFLantiviralfishsolublenanoplatformvirusesuseddesignplatformimproveimmunogenicitysafesubunitvaccinesprovidingbroaderprotectionviralinfectionsInfectiousHematopoieticNecrosiscausativeagentWOAH-listedIHNdiseasescurrentlytherapeutictreatmentsgloballyavailablegeneticallyfusingHpyloriscaffoldconstructednanovaccineDespiteintroductionexogenousfragmentshowexcellentstoragepHtemperatureconditionsmimickingharshgastrointestinalconditionmaintroutMTTviabilityassaysshowedcytotoxicityzebrafishcellcultureincubateddoses100µg/mL14hoursalsoupregulatedexpressioninnateimmunityrhabdovirusinfectiongenemarkersmxvig1ifit5isg-15macrophagedemonstraterecombinantEcolisystemusingbiocompatiblestableeffectivefoundationrescueproduceenableoraladministrationinductioncompletenanocagesapproachofferssignificantpotentialnon-mammalianenvelopedinfectioushematopoieticnecrosismacrophages

Similar Articles

Cited By (3)