Large-scale analysis of interobserver agreement and reliability in cardiotocography interpretation during labor using an online tool.

Imane Ben M'Barek, Badr Ben M'Barek, Grégoire Jauvion, Emilia Holmström, Antoine Agman, Jade Merrer, Pierre-François Ceccaldi
Author Information
  1. Imane Ben M'Barek: Service de Gynécologie Obstétrique, Assistance Publique Hôpitaux de Paris - Hôpital Beaujon, 100 boulevard du Général Leclerc, Clichy La Garenne, France. imane.benmbarek@aphp.fr.
  2. Badr Ben M'Barek: Genos Care, Paris, France.
  3. Grégoire Jauvion: Genos Care, Paris, France.
  4. Emilia Holmström: Service de Gynécologie Obstétrique, Assistance Publique Hôpitaux de Paris - Hôpital Beaujon, 100 boulevard du Général Leclerc, Clichy La Garenne, France.
  5. Antoine Agman: Service de Gynécologie Obstétrique, Assistance Publique Hôpitaux de Paris - Hôpital Beaujon, 100 boulevard du Général Leclerc, Clichy La Garenne, France.
  6. Jade Merrer: AP-HP.Nord-Université Paris Cité, Hôpital Universitaire Robert Debré, Unité d'épidémiologie clinique, 1426, InsermParis, CIC, France.
  7. Pierre-François Ceccaldi: Service de Gynécologie-Obstétrique et Médecine de la reproduction, Hôpital Foch, 40 Rue Worth, 92150, Suresnes, France.

Abstract

BACKGROUND: While the effectiveness of cardiotocography in reducing neonatal morbidity is still debated, it remains the primary method for assessing fetal well-being during labor. Evaluating how accurately professionals interpret cardiotocography signals is essential for its effective use. The objective was to evaluate the accuracy of fetal hypoxia prediction by practitioners through the interpretation of cardiotocography signals and clinical variables during labor.
MATERIAL AND METHODS: We conducted a cross-sectional online survey, involving 120 obstetric healthcare providers from several countries. One hundred cases, including fifty cases of fetal hypoxia, were randomly assigned to participants who were invited to predict the fetal outcome (binary criterion of pH with a threshold of 7.15) based on the cardiotocography signals and clinical variables. After describing the participants, we calculated (with a 95% confidence interval) the success rate, sensitivity and specificity to predict the fetal outcome for the whole population and according to pH ranges, professional groups and number of years of experience. Interobserver agreement and reliability were evaluated using the proportion of agreement and Cohen's kappa respectively.
RESULTS: The overall ability to predict a pH level below 7.15 yielded a success rate of 0.58 (95% CI 0.56-0.60), a sensitivity of 0.58 (95% CI 0.56-0.60) and a specificity of 0.63 (95% CI 0.61-0.65). No significant difference in the success rates was observed with respect to profession and number of years of experience. The success rate was higher for the cases with a pH level below 7.05 (0.69) and above 7.20 (0.66) compared to those falling between 7.05 and 7.20 (0.48). The proportion of agreement between participants was good (0.82), with an overall kappa coefficient indicating substantial reliability (0.63).
CONCLUSIONS: The use of an online tool enabled us to collect a large amount of data to analyze how practitioners interpret cardiotocography data during labor. Despite a good level of agreement and reliability among practitioners, the overall accuracy is poor, particularly for cases with a neonatal pH between 7.05 and 7.20. Factors such as profession and experience level do not present notable impact on the accuracy of the annotations. The implementation and use of a computerized cardiotocography analysis software has the potential to enhance the accuracy to detect fetal hypoxia, especially for ambiguous cardiotocography tracings.

Keywords

References

  1. Am J Obstet Gynecol. 2023 Jun;228(6):622-644 [PMID: 37270259]
  2. Am J Obstet Gynecol. 2000 Aug;183(2):361-6 [PMID: 10942470]
  3. Arch Gynecol Obstet. 2017 Nov;296(5):897-905 [PMID: 28879450]
  4. PLoS One. 2014 Dec 01;9(12):e112296 [PMID: 25437442]
  5. Int J Gynaecol Obstet. 2015 Oct;131(1):13-24 [PMID: 26433401]
  6. J Perinat Med. 2006;34(4):298-302 [PMID: 16856819]
  7. Am J Perinatol. 2013 Jun;30(6):463-8 [PMID: 23161350]
  8. Int J Gynaecol Obstet. 2010 Jul;110(1):1-6 [PMID: 20434156]
  9. BMC Pregnancy Childbirth. 2014 Jan 13;14:16 [PMID: 24418387]
  10. J Gynecol Obstet Hum Reprod. 2017 Feb;46(2):131-135 [PMID: 28403968]
  11. BJOG. 2005 May;112(5):667-9 [PMID: 15842294]
  12. Gynecol Obstet Invest. 2011;72(3):169-73 [PMID: 21921568]
  13. J Clin Epidemiol. 1990;43(6):543-9 [PMID: 2348207]
  14. Cochrane Database Syst Rev. 2017 Feb 03;2:CD006066 [PMID: 28157275]
  15. Am J Obstet Gynecol. 1993 Mar;168(3 Pt 1):842-7 [PMID: 8456890]
  16. Am J Obstet Gynecol. 2011 Oct;205(4):378.e1-5 [PMID: 21864826]
  17. J Gynecol Obstet Biol Reprod (Paris). 2013 Oct;42(6):509-10 [PMID: 24011789]
  18. Minerva Ginecol. 2019 Apr;71(2):91-96 [PMID: 30318881]
  19. BJOG. 2010 Sep;117(10):1288-93 [PMID: 20618316]
  20. J Perinat Med. 2005;33(3):241-5 [PMID: 15914348]
  21. Lancet. 1991 Jan 26;337(8735):215-8 [PMID: 1670851]
  22. Eur J Obstet Gynecol Reprod Biol X. 2020 Nov 25;9:100120 [PMID: 33319210]
  23. Front Neurosci. 2021 Oct 25;15:755554 [PMID: 34759794]
  24. Acta Obstet Gynecol Scand. 2023 Aug;102(8):970-985 [PMID: 37310765]
  25. J Biopharm Stat. 2016;26(2):323-38 [PMID: 25632882]
  26. J Eval Clin Pract. 2015 Aug;21(4):694-702 [PMID: 26011725]
  27. BJOG. 2003 Jan;110(1):1-5 [PMID: 12504927]
  28. Acta Obstet Gynecol Scand. 2017 Feb;96(2):166-175 [PMID: 27869985]
  29. Acta Obstet Gynecol Scand. 2023 Feb;102(2):130-137 [PMID: 36541016]
  30. Acad Emerg Med. 1996 Sep;3(9):895-900 [PMID: 8870764]
  31. J Matern Fetal Neonatal Med. 2022 Dec;35(25):8498-8506 [PMID: 34652249]
  32. BJOG. 2009 Mar;116(4):545-51 [PMID: 19250366]
  33. BJOG. 2011 Jul;118(8):926-35 [PMID: 21658193]
  34. Int J Gynaecol Obstet. 2017 Jul;138(1):89-93 [PMID: 28346664]
  35. Acta Obstet Gynecol Scand. 2012 Dec;91(12):1428-32 [PMID: 22881463]
  36. J Biomed Inform. 2002 Apr;35(2):99-110 [PMID: 12474424]
  37. Biosensors (Basel). 2022 Aug 27;12(9): [PMID: 36140076]
  38. J Pediatr. 2013 Jan;162(1):35-41 [PMID: 22871488]
  39. Biometrics. 1977 Mar;33(1):159-74 [PMID: 843571]
  40. BJOG. 2009 Jul;116(8):1081-7; discussion 1087-8 [PMID: 19515149]
  41. J Clin Epidemiol. 2011 Jan;64(1):96-106 [PMID: 21130355]
  42. Front Pediatr. 2023 Jun 15;11:1190441 [PMID: 37397139]
  43. Eur J Obstet Gynecol Reprod Biol. 2019 Sep;240:62-67 [PMID: 31229725]

MeSH Term

Pregnancy
Infant, Newborn
Female
Humans
Cardiotocography
Fetal Hypoxia
Observer Variation
Reproducibility of Results
Cross-Sectional Studies
Heart Rate, Fetal

Word Cloud

Created with Highcharts 10.0.00cardiotocography7fetalagreementpHlaboraccuracyhypoxiacases95%successratereliabilitylevelsignalsusepractitionersonlineparticipantspredictexperienceoverallCI0520neonatalinterpretinterpretationclinicalvariablesoutcome15sensitivityspecificitynumberyearsInterobserverusingproportionkappa5856-06063professiongoodtooldataanalysisFetalBACKGROUND:effectivenessreducingmorbiditystilldebatedremainsprimarymethodassessingwell-beingEvaluatingaccuratelyprofessionalsessentialeffectiveobjectiveevaluatepredictionMATERIALANDMETHODS:conductedcross-sectionalsurveyinvolving120obstetrichealthcareprovidersseveralcountriesOnehundredincludingfiftyrandomlyassignedinvitedbinarycriterionthresholdbaseddescribingcalculatedconfidenceintervalwholepopulationaccordingrangesprofessionalgroupsevaluatedCohen'srespectivelyRESULTS:abilityyielded61-065significantdifferenceratesobservedrespecthigher6966comparedfalling4882coefficientindicatingsubstantialCONCLUSIONS:enableduscollectlargeamountanalyzeDespiteamongpoorparticularlyFactorspresentnotableimpactannotationsimplementationcomputerizedsoftwarepotentialenhancedetectespeciallyambiguoustracingsLarge-scaleinterobserverCardiotocographyheartIntrapartumLabor

Similar Articles

Cited By