Rapid detection of in based on CRISPR-Cas13a coupled with recombinase polymerase amplification.

Xiao-Xuan Zhu, Ying-Si Wang, Su-Juan Li, Ru-Qun Peng, Xia Wen, Hong Peng, Qing-Shan Shi, Gang Zhou, Xiao-Bao Xie, Jie Wang
Author Information
  1. Xiao-Xuan Zhu: Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
  2. Ying-Si Wang: Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
  3. Su-Juan Li: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
  4. Ru-Qun Peng: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
  5. Xia Wen: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
  6. Hong Peng: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
  7. Qing-Shan Shi: Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
  8. Gang Zhou: Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
  9. Xiao-Bao Xie: Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
  10. Jie Wang: Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.

Abstract

The principal pathogen responsible for chronic urinary tract infections, immunocompromised hosts, and cystic fibrosis patients is , which is difficult to eradicate. Due to the extensive use of antibiotics, multidrug-resistant has evolved, complicating clinical therapy. Therefore, a rapid and efficient approach for detecting strains and their resistance genes is necessary for early clinical diagnosis and appropriate treatment. This study combines recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats-association protein 13a (CRISPR-Cas13a) to establish a one-tube and two-step reaction systems for detecting the gene in . The test times for one-tube and two-step RPA-Cas13a methods were 5 and 40 min (including a 30 min RPA amplification reaction), respectively. Both methods outperform Quantitative Real-time Polymerase Chain Reactions (qRT-PCR) and traditional PCR. The limit of detection (LoD) of genome in one-tube and two-step RPA-Cas13a is 10 aM and 1 aM, respectively. Meanwhile, the designed primers have a high specificity for gene. These two methods were also verified with actual samples isolated from industrial settings and demonstrated great accuracy. Furthermore, the results of the two-step RPA-Cas13a assay could also be visualized using a commercial lateral flow dipstick with a LoD of 10 fM, which is a useful adjunt to the gold-standard qRT-PCR assay in field detection. Taken together, the procedure developed in this study using RPA and CRISPR-Cas13a provides a simple and fast way for detecting resistance genes.

Keywords

References

  1. Pathog Dis. 2013 Apr;67(3):159-73 [PMID: 23620179]
  2. Front Microbiol. 2020 Aug 18;11:1974 [PMID: 32973714]
  3. Evid Based Nurs. 2023 Jul 27;: [PMID: 37500506]
  4. Trends Plant Sci. 2019 Dec;24(12):1102-1125 [PMID: 31727474]
  5. Talanta. 2022 Oct 1;248:123594 [PMID: 35653961]
  6. J Food Sci. 2021 Jun;86(6):2615-2625 [PMID: 33931854]
  7. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  8. mSphere. 2023 Oct 24;8(5):e0041623 [PMID: 37732792]
  9. Antibiotics (Basel). 2019 Apr 06;8(2): [PMID: 30959901]
  10. Nat Commun. 2020 Aug 17;11(1):4131 [PMID: 32807807]
  11. Antibiotics (Basel). 2023 Aug 09;12(8): [PMID: 37627724]
  12. Microbiology (Reading). 2020 Jan;166(1):30-33 [PMID: 31597590]
  13. Bioconjug Chem. 2022 Jun 15;33(6):1232-1240 [PMID: 35586918]
  14. Virus Res. 2023 Jul 15;332:199130 [PMID: 37178792]
  15. Front Microbiol. 2022 Dec 08;13:1060947 [PMID: 36569102]
  16. Anal Chem. 2019 Oct 1;91(19):12156-12161 [PMID: 31460749]
  17. Environ Int. 2023 Aug;178:108084 [PMID: 37421899]
  18. EBioMedicine. 2023 Aug;94:104730 [PMID: 37487416]
  19. Front Cell Infect Microbiol. 2022 Sep 13;12:976137 [PMID: 36176580]
  20. Anal Chem. 2023 May 2;95(17):6940-6947 [PMID: 37083348]
  21. Curr Microbiol. 2023 Sep 22;80(11):352 [PMID: 37737960]
  22. Int J Food Microbiol. 2016 Feb 2;218:38-43 [PMID: 26599860]
  23. Viruses. 2022 Jan 18;14(2): [PMID: 35215773]
  24. Anal Chim Acta. 2023 Oct 16;1278:341757 [PMID: 37709482]
  25. Science. 2016 Aug 05;353(6299):aaf5573 [PMID: 27256883]
  26. Curr Opin Crit Care. 2023 Oct 1;29(5):438-445 [PMID: 37641512]
  27. Front Microbiol. 2017 Aug 14;8:1493 [PMID: 28855894]
  28. Science. 2018 Apr 27;360(6387):439-444 [PMID: 29449508]
  29. J Biomed Nanotechnol. 2019 Apr 1;15(4):790-798 [PMID: 30841971]
  30. Front Microbiol. 2019 Nov 19;10:2664 [PMID: 31803171]
  31. Clin Microbiol Infect. 2022 Apr;28(4):521-547 [PMID: 34923128]
  32. Nat Protoc. 2019 Oct;14(10):2986-3012 [PMID: 31548639]
  33. J Microbiol Immunol Infect. 2022 Aug;55(4):749-756 [PMID: 34969623]
  34. Anal Chim Acta. 2022 May 1;1205:339749 [PMID: 35414398]
  35. Anal Chem. 2023 Jul 18;95(28):10522-10531 [PMID: 37390127]
  36. Front Cell Infect Microbiol. 2022 Nov 28;12:1019071 [PMID: 36519130]
  37. Anal Chim Acta. 2020 Aug 29;1127:225-233 [PMID: 32800128]
  38. Int J Food Microbiol. 2023 Oct 16;403:110296 [PMID: 37392610]
  39. Biosens Bioelectron. 2022 Apr 15;202:113994 [PMID: 35042129]
  40. Diagn Microbiol Infect Dis. 2021 Mar;99(3):115275 [PMID: 33360431]
  41. Sens Actuators B Chem. 2022 Nov 15;371:132537 [PMID: 36032355]
  42. Food Chem. 2022 Nov 1;393:133344 [PMID: 35689920]
  43. Cell. 2017 Aug 10;170(4):714-726.e10 [PMID: 28757251]
  44. Emerg Microbes Infect. 2023 Dec;12(1):e2177088 [PMID: 36735916]
  45. PLoS Pathog. 2023 Jan 23;19(1):e1011110 [PMID: 36689471]
  46. G3 (Bethesda). 2016 Oct 13;6(10):3207-3217 [PMID: 27574103]
  47. Front Immunol. 2023 May 09;14:1116230 [PMID: 37228594]
  48. Microbiol Spectr. 2023 Aug 17;11(4):e0188623 [PMID: 37378559]
  49. Microorganisms. 2023 Jan 31;11(2): [PMID: 36838319]
  50. Nat Rev Genet. 2019 Jun;20(6):356-370 [PMID: 30886350]
  51. Front Microbiol. 2021 Oct 18;12:732426 [PMID: 34733250]
  52. Nat Biomed Eng. 2022 Aug;6(8):932-943 [PMID: 35637389]
  53. Antibiotics (Basel). 2021 May 31;10(6): [PMID: 34073068]
  54. Environ Sci Pollut Res Int. 2020 Jul;27(20):24999-25008 [PMID: 32342417]
  55. Science. 2017 Apr 28;356(6336):438-442 [PMID: 28408723]
  56. Nat Commun. 2019 Apr 3;10(1):1520 [PMID: 30944318]
  57. J Gen Appl Microbiol. 2001 Feb;47(1):27-32 [PMID: 12483565]
  58. EBioMedicine. 2019 Mar;41:479-487 [PMID: 30852163]
  59. Nat Commun. 2020 Nov 20;11(1):5921 [PMID: 33219225]
  60. Poult Sci. 2020 Jul;99(7):3393-3401 [PMID: 32616233]
  61. Appl Microbiol Biotechnol. 2022 Jun;106(12):4607-4616 [PMID: 35708748]
  62. Bioessays. 2021 Apr;43(4):e2000315 [PMID: 33569817]
  63. Curr Issues Mol Biol. 2023 Jan 10;45(1):649-662 [PMID: 36661529]
  64. Acta Trop. 2021 Jun;218:105892 [PMID: 33753031]

Word Cloud

Created with Highcharts 10.0.0amplificationtwo-stepdetectiondetectingrecombinasepolymeraseRPACRISPR-Cas13aone-tubeRPA-Cas13amethodsclinicalresistancegenesstudyreactiongenerespectivelyqRT-PCRLoD10aMalsoassayusingprincipalpathogenresponsiblechronicurinarytractinfectionsimmunocompromisedhostscysticfibrosispatientsdifficulteradicateDueextensiveuseantibioticsmultidrug-resistantevolvedcomplicatingtherapyThereforerapidefficientapproachstrainsnecessaryearlydiagnosisappropriatetreatmentcombinesclusteredregularlyinterspacedshortpalindromicrepeats-associationprotein13aestablishsystemstesttimes540 minincluding30 minoutperformQuantitativeReal-timePolymeraseChainReactionstraditionalPCRlimitgenome1MeanwhiledesignedprimershighspecificitytwoverifiedactualsamplesisolatedindustrialsettingsdemonstratedgreataccuracyFurthermoreresultsvisualizedcommerciallateralflowdipstickfMusefuladjuntgold-standardfieldTakentogetherproceduredevelopedprovidessimplefastwayRapidbasedcoupledCrispr-cas13aMexXPseudomonasaeruginosa

Similar Articles

Cited By (2)