Alterations in functional connectivity in patients with non-specific chronic low back pain after motor control exercise: a randomized trial.

Chanjuan Zhang, Zhou Zhang, Yuelong Li, Yi Yin, Chenyang Feng, Wenfeng Zhan, Ruochen Fu, Qiuhua Yu, Guihua Jiang, Chuhuai Wang
Author Information
  1. Chanjuan Zhang: Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
  2. Zhou Zhang: Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
  3. Yuelong Li: Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
  4. Yi Yin: Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
  5. Chenyang Feng: State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
  6. Wenfeng Zhan: Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
  7. Ruochen Fu: Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
  8. Qiuhua Yu: Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China - yuqiuhua@mail.sysu.edu.cn.
  9. Guihua Jiang: Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
  10. Chuhuai Wang: Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.

Abstract

BACKGROUND: Motor control exercise (MCE) is effective in alleviating non-specific chronic low back pain (NCLBP). Neuro-imaging research is warranted to explore the underlying neural mechanisms of MCE.
AIM: We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the central mechanism underpinning the effects of MCE in patients with NCLBP.
DESIGN: A randomized, single-blinded, controlled trial.
SETTING: The setting was out-patient and community.
POPULATION: Fifty-eight patients with NCLBP.
METHODS: Patients were randomized into the MCE or manual therapy (MT) group. All the participants completed pain-related clinical assessments and rs-fMRI scans before and after intervention. We performed exploratory whole-brain analyses in regional homogeneity (ReHo) and resting-state functional connectivity (rsFC) with significant post-pre differences in ReHo before and after intervention, and investigated associations between imaging and pain-related clinical assessments.
RESULTS: Compared with the MT group, a greater alleviation in pain intensity and disability was observed in the MCE group after intervention, and was sustained at the 6-month follow-up (P<0.001). Only the MCE group showed increased ReHo values in the right pre-central gyrus and decreased ReHo values in the bilateral posterior cerebellum (voxel level P<0.001, cluster-level FWE corrected P<0.05). Decreased rsFC of the right posterior cerebellum-left superior parietal gyrus and left insula were significantly positively associated with pain-related disability (voxel level P<0.001, cluster-level FWE corrected P<0.05).
CONCLUSIONS: These findings demonstrated that MCE had superior effects in relieving pain and pain-related disability, which might be associated with its modulation of rsFC between the cerebellum and areas involved in sensory-discriminative processing of noxious and somato-sensory stimuli, affection, and cognition.
CLINICAL REHABILITATION IMPACT: This study provided preliminary evidence that MCE might alleviate NCLBP through its modulation of the function of brain areas related to chronic pain and postural control. Those results support MCE's clinical application and help physiotherapists to provide better multidisciplinary interventions with the combination of MCE and other first-line treatments.

References

  1. Int J Dev Neurosci. 2022 Jun;82(4):295-302 [PMID: 35274372]
  2. Work. 2005;25(4):307-14 [PMID: 16340107]
  3. Neurosci Biobehav Rev. 2021 Dec;131:923-940 [PMID: 34655658]
  4. Gait Posture. 2015 Oct;42(4):584-9 [PMID: 26404082]
  5. Neuroimage. 2016 Jan 1;124(Pt A):498-508 [PMID: 26334836]
  6. Brain Plast. 2019 Dec 26;5(1):105-122 [PMID: 31970064]
  7. J Pain Res. 2019 Feb 28;12:841-850 [PMID: 30881095]
  8. Neuroimage Clin. 2014 Jul 23;5:365-76 [PMID: 26958466]
  9. JAMA Psychiatry. 2022 Jan 1;79(1):13-23 [PMID: 34586357]
  10. Front Neurol. 2021 May 28;12:680896 [PMID: 34122321]
  11. Spine (Phila Pa 1976). 2008 Jan 1;33(1):90-4 [PMID: 18165753]
  12. Lipids Health Dis. 2022 Nov 25;21(1):125 [PMID: 36434687]
  13. Lancet. 2017 Feb 18;389(10070):736-747 [PMID: 27745712]
  14. Front Hum Neurosci. 2022 Feb 22;16:757522 [PMID: 35273485]
  15. Neuroimage. 2011 Sep 1;58(1):226-33 [PMID: 21689765]
  16. Cortex. 2010 Jul-Aug;46(7):831-44 [PMID: 20152963]
  17. Neuroradiology. 2016 May;58(5):503-11 [PMID: 26843179]
  18. Brain Behav Immun. 2019 Nov;82:253-263 [PMID: 31472246]
  19. Neuroimage. 2004 May;22(1):394-400 [PMID: 15110032]
  20. Br J Sports Med. 2019 Feb;53(3):172-181 [PMID: 29678893]
  21. Neuroimage. 2020 Aug 1;216:116859 [PMID: 32325211]
  22. Neuroimage. 2011 Jan 15;54(2):1324-35 [PMID: 20851770]
  23. Neuroimage. 2020 Sep;218:116969 [PMID: 32439536]
  24. Br J Anaesth. 2019 Aug;123(2):e303-e311 [PMID: 30948036]
  25. J Pain. 2021 May;22(5):545-555 [PMID: 33321196]
  26. J Pain. 2003 Sep;4(7):407-14 [PMID: 14622683]
  27. Neuroscience. 2022 Apr 1;487:143-154 [PMID: 35134490]
  28. Exp Neurol. 2022 Sep;355:114137 [PMID: 35671801]
  29. Neurobiol Pain. 2023 Apr 20;13:100129 [PMID: 37206154]
  30. Brain. 2008 Aug;131(Pt 8):2161-71 [PMID: 18669505]
  31. Neurosci Biobehav Rev. 2022 Aug;139:104736 [PMID: 35700753]
  32. Neuroscience. 2017 Sep 1;358:181-189 [PMID: 28673716]
  33. Eur Spine J. 2010 Sep;19(9):1484-94 [PMID: 20397032]
  34. Neuroimage. 2002 May;16(1):158-68 [PMID: 11969326]
  35. Ann Intern Med. 2017 Apr 4;166(7):514-530 [PMID: 28192789]
  36. Mol Pain. 2018 Jan-Dec;14:1744806918755283 [PMID: 29353539]
  37. Spine (Phila Pa 1976). 2006 Aug 1;31(17):2017-23 [PMID: 16924221]
  38. Ann Intern Med. 2007 Oct 2;147(7):478-91 [PMID: 17909209]
  39. Cerebellum. 2019 Jun;18(3):527-535 [PMID: 30830672]
  40. J Affect Disord. 2021 Dec 1;295:1057-1065 [PMID: 34706414]
  41. Brain Res Rev. 2010 Oct 5;65(1):14-27 [PMID: 20553761]
  42. Pain Res Manag. 2020 Oct 28;2020:9629526 [PMID: 33193926]
  43. J Mot Behav. 2021;53(2):258-274 [PMID: 32194004]
  44. J Neurosci Res. 2022 Mar;100(3):798-826 [PMID: 34981561]
  45. J Neurosci. 2015 Nov 18;35(46):15307-25 [PMID: 26586819]
  46. N Engl J Med. 2022 May 5;386(18):1732-1740 [PMID: 35507483]
  47. Eur J Pain. 2020 May;24(5):945-955 [PMID: 32061140]
  48. Pain Pract. 2023 Mar;23(3):264-276 [PMID: 36461643]
  49. Exp Clin Endocrinol Diabetes. 2013 Jun;121(6):354-60 [PMID: 23757052]
  50. Neuroimage Clin. 2015 Aug 18;9:134-9 [PMID: 26413476]
  51. JAMA. 2022 Aug 2;328(5):430-439 [PMID: 35916848]
  52. Br J Anaesth. 2019 Oct;123(4):506-518 [PMID: 31395306]
  53. J Neurosci. 2011 Mar 9;31(10):3795-804 [PMID: 21389234]
  54. Eur J Phys Rehabil Med. 2021 Oct;57(5):793-806 [PMID: 33960180]
  55. Neuroimage Clin. 2020;25:102182 [PMID: 31978826]
  56. J Pain. 2010 Nov;11(11):1120-8 [PMID: 20434958]
  57. Pain. 2016 Jan;157(1):117-127 [PMID: 26307859]
  58. Eur J Pain. 2010 Sep;14(8):832-9 [PMID: 20181504]
  59. Front Psychol. 2023 Jun 13;14:1161613 [PMID: 37384193]

MeSH Term

Humans
Low Back Pain
Magnetic Resonance Imaging
Brain
Chronic Pain
Exercise

Word Cloud

Created with Highcharts 10.0.0MCEpainP<0NCLBPgrouppain-relatedReHocontrolchronicfunctionalpatientsrandomizedclinicalinterventionrsFCdisability001non-specificlowbackexploreresting-stateimagingrs-fMRIeffectstrialMTassessmentsconnectivityvaluesrightgyrusposteriorcerebellumvoxellevelcluster-levelFWEcorrected05superiorassociatedmightmodulationareasBACKGROUND:MotorexerciseeffectivealleviatingNeuro-imagingresearchwarrantedunderlyingneuralmechanismsAIM:usedmagneticresonancecentralmechanismunderpinningDESIGN:single-blindedcontrolledSETTING:settingout-patientcommunityPOPULATION:Fifty-eightMETHODS:Patientsmanualtherapyparticipantscompletedscansperformedexploratorywhole-brainanalysesregionalhomogeneitysignificantpost-predifferencesinvestigatedassociationsRESULTS:Comparedgreateralleviationintensityobservedsustained6-monthfollow-upshowedincreasedpre-centraldecreasedbilateralDecreasedcerebellum-leftparietalleftinsulasignificantlypositivelyCONCLUSIONS:findingsdemonstratedrelievinginvolvedsensory-discriminativeprocessingnoxioussomato-sensorystimuliaffectioncognitionCLINICALREHABILITATIONIMPACT:studyprovidedpreliminaryevidencealleviatefunctionbrainrelatedposturalresultssupportMCE'sapplicationhelpphysiotherapistsprovidebettermultidisciplinaryinterventionscombinationfirst-linetreatmentsAlterationsmotorexercise:

Similar Articles

Cited By