Effect of three different insect larvae on growth performance and antioxidant activity of thigh, breast, and liver tissues of chickens reared under mild heat stress.

Vasilopoulos Stelios, Giannenas Ilias, Panitsidis Ioannis, Athanassiou Christos, Papadopoulos Elias, Fortomaris Paschalis
Author Information
  1. Vasilopoulos Stelios: Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, PC, Greece. ORCID
  2. Giannenas Ilias: Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, PC, Greece. igiannenas@vet.auth.gr. ORCID
  3. Panitsidis Ioannis: Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, PC, Greece. ORCID
  4. Athanassiou Christos: Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446, Volos, N. Ionia, Greece. ORCID
  5. Papadopoulos Elias: Laboratory of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Aristotle University, 54124, Thessaloniki, Greece. ORCID
  6. Fortomaris Paschalis: Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece. ORCID

Abstract

This study investigated the potential of insect-based diets to mitigate heat stress impact on broiler chickens, focusing on growth performance and antioxidant stability. Four dietary groups were examined, including a control and three treated groups with Tenebrio molitor (TM), Hermetia illucens (HI), and Zophobas morio (ZM) larvae, respectively, at a 5% replacement ratio. Temperature and relative humidity of the poultry house were monitored. Under heat stress conditions, the HI-fed group consistently exhibited the highest body weight, demonstrating their remarkable growth-promoting potential. TM-fed broilers also displayed commendable growth compared to the control. Insect larvae inclusion in the diet improved feed intake during early growth stages, indicating their positive influence on nutrient utilization. Regarding antioxidant stability, malondialdehyde (MDA) levels in the liver, an oxidative stress and lipid peroxidation marker, were significantly lower in the TM-fed group, suggesting reduced oxidative stress. While the specific insect-based diet did not significantly affect MDA levels in thigh and breast tissues, variations in the total phenolic content (TPC) were observed across tissues, with HI larvae significantly increasing it in the breast. However, the total antioxidant capacity (TAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) levels did not differ significantly among dietary groups in the examined tissues. Results suggest that insect-based diets enhance broiler growth and potentially reduce oxidative stress, particularly in the liver. Dietary presence of bioactive compounds may contribute to these benefits. Further research is required to fully elucidate the mechanisms underlying these findings. Insect-based diets seem to offer promise as feed additives in addressing the multifaceted challenges of oxidative stress and enhancing broiler health and resilience under heat stress conditions.

Keywords

References

  1. Anim Nutr. 2022 Dec 09;13:90-100 [PMID: 37091745]
  2. Neurosci Lett. 2004 Mar 4;357(2):83-6 [PMID: 15036580]
  3. Poult Sci. 2015 Jul;94(7):1635-44 [PMID: 25910904]
  4. Front Vet Sci. 2021 Jul 23;8:699081 [PMID: 34368284]
  5. Materials (Basel). 2021 Jul 25;14(15): [PMID: 34361329]
  6. J Sci Food Agric. 2018 Sep;98(12):4471-4478 [PMID: 29457848]
  7. Front Vet Sci. 2022 Aug 03;9:957847 [PMID: 35990269]
  8. Front Nutr. 2021 Feb 26;8:642551 [PMID: 33718423]
  9. Crit Rev Food Sci Nutr. 2023 Jun 21;:1-23 [PMID: 37341655]
  10. Animal. 2012 May;6(5):707-28 [PMID: 22558920]
  11. Front Physiol. 2023 Sep 12;14:1242094 [PMID: 37772060]
  12. Poult Sci. 2019 Dec 1;98(12):6684-6692 [PMID: 31573614]
  13. Antioxidants (Basel). 2021 Dec 30;11(1): [PMID: 35052595]
  14. Antioxidants (Basel). 2021 Oct 29;10(11): [PMID: 34829596]
  15. Br Poult Sci. 2003 Sep;44(4):545-50 [PMID: 14584844]
  16. Asian-Australas J Anim Sci. 2020 May;33(5):778-787 [PMID: 31480196]
  17. Poult Sci. 2008 Nov;87(11):2382-9 [PMID: 18931191]
  18. Antibiotics (Basel). 2021 Oct 21;10(11): [PMID: 34827223]
  19. Insects. 2022 Sep 13;13(9): [PMID: 36135532]
  20. Animals (Basel). 2019 Mar 21;9(3): [PMID: 30901977]
  21. PLoS One. 2017 Jan 3;12(1):e0169511 [PMID: 28046072]
  22. Br Poult Sci. 2012;53(5):689-98 [PMID: 23281765]
  23. Anal Biochem. 1999 May 1;269(2):337-41 [PMID: 10222007]
  24. Food Chem. 2016 Feb 15;193:39-46 [PMID: 26433285]
  25. Front Nutr. 2020 Jul 10;7:89 [PMID: 32754611]
  26. Poult Sci. 2022 Oct;101(10):102085 [PMID: 36055022]
  27. Poult Sci. 2021 Jul;100(7):101163 [PMID: 34082177]
  28. Food Chem. 2020 May 1;311:126022 [PMID: 31869637]
  29. Poult Sci. 2018 Feb 1;97(2):430-437 [PMID: 29077887]
  30. Foods. 2020 Jun 29;9(7): [PMID: 32610520]
  31. Clin Rev Allergy Immunol. 2018 Apr;54(2):213-223 [PMID: 28251581]
  32. Front Nutr. 2023 Mar 01;10:1133342 [PMID: 36937358]
  33. PLoS One. 2022 Feb 25;17(2):e0263924 [PMID: 35213590]
  34. Front Microbiol. 2018 Sep 11;9:2013 [PMID: 30258412]
  35. Br Poult Sci. 2016 Oct;57(5):714-722 [PMID: 27302855]
  36. Front Vet Sci. 2020 Nov 05;7:568093 [PMID: 33251258]
  37. Poult Sci. 2022 Oct;101(10):102063 [PMID: 36049294]
  38. Anim Biosci. 2022 Feb;35(2):317-331 [PMID: 34991214]
  39. Int J Biometeorol. 2007 Dec;52(2):149-57 [PMID: 17530301]
  40. J Pharmacol Pharmacother. 2013 Oct;4(4):303-6 [PMID: 24250214]
  41. Biotechnol Adv. 2007 Mar-Apr;25(2):198-202 [PMID: 17197149]

Grants

  1. Τ2ΕΔΚ-02356/Greece and European Regional Development Fund

MeSH Term

Animals
Thigh
Antioxidants
Chickens
Insecta
Liver
Larva
Heat Stress Disorders

Chemicals

Antioxidants

Word Cloud

Created with Highcharts 10.0.0stressgrowthheatantioxidantlarvaeoxidativesignificantlytissuesinsect-baseddietsbroilergroupslevelsliverbreastpotentialchickensperformancestabilitydietaryexaminedcontrolthreeHIconditionsgroupTM-fedInsectdietfeedMDAthightotalstudyinvestigatedmitigateimpactfocusingFourincludingtreatedTenebriomolitorTMHermetiaillucensZophobasmorioZMrespectively5%replacementratioTemperaturerelativehumiditypoultryhousemonitoredHI-fedconsistentlyexhibitedhighestbodyweightdemonstratingremarkablegrowth-promotingbroilersalsodisplayedcommendablecomparedinclusionimprovedintakeearlystagesindicatingpositiveinfluencenutrientutilizationRegardingmalondialdehydelipidperoxidationmarkerlowersuggestingreducedspecificaffectvariationsphenoliccontentTPCobservedacrossincreasingHowevercapacityTAC22-diphenyl-1-picrylhydrazylDPPHdifferamongResultssuggestenhancepotentiallyreduceparticularlyDietarypresencebioactivecompoundsmaycontributebenefitsresearchrequiredfullyelucidatemechanismsunderlyingfindingsInsect-basedseemofferpromiseadditivesaddressingmultifacetedchallengesenhancinghealthresilienceEffectdifferentinsectactivityrearedmildBlacksoldierflyBroilerHeatmealMealwormSuperworm

Similar Articles

Cited By

No available data.