Detection of TTR Amyloid in the Conjunctiva Using a Novel Fluorescent Ocular Tracer.

Julie Pilotte, Alex S Huang, Sami Khoury, Xiaowei Zhang, Ali Tafreshi, Peter Vanderklish, Stella T Sarraf, Jose S Pulido, Tatyana Milman
Author Information
  1. Julie Pilotte: Amydis, Inc., La Jolla, CA, USA.
  2. Alex S Huang: Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
  3. Sami Khoury: Amydis, Inc., La Jolla, CA, USA.
  4. Xiaowei Zhang: Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
  5. Ali Tafreshi: Amydis, Inc., La Jolla, CA, USA.
  6. Peter Vanderklish: Amydis, Inc., La Jolla, CA, USA.
  7. Stella T Sarraf: Amydis, Inc., La Jolla, CA, USA.
  8. Jose S Pulido: Vickie and Jack Farber Vision Research Center and MidAtlantic Retina Service, Wills Eye Hospital, Philadelphia, PA, USA.
  9. Tatyana Milman: Vickie and Jack Farber Vision Research Center and MidAtlantic Retina Service, Wills Eye Hospital, Philadelphia, PA, USA.

Abstract

Background: Transthyretin amyloidosis (ATTR) is a significant cause of cardiomyopathy and other morbidities in the elderly and Black Americans. ATTR can be treated with new disease-modifying therapies, but large shortfalls exist in its diagnosis. The objective of this study was to test whether TTR amyloid can be detected and imaged in the conjunctiva using a novel small-molecule fluorescent ocular tracer, with the implication that ATTR might be diagnosable by a simple eye examination.
Methods: Three approaches were used in this study. First, AMDX-9101 was incubated with in vitro aggregated TTR protein, and changes in its excitation and emission spectra were quantified. Second, a cadaver eye from a patient with familial amyloid polyneuropathy type II TTR mutation and a vitrectomy sample from an hATTR patient were incubated with AMDX-9101 and counterstained with Congo Red and antibodies to TTR to determine whether AMDX-9101 labels disease-related TTR amyloid deposits in human conjunctiva and eye. Last, imaging of in vitro aggregated TTR amyloid labeled with AMDX-9101 was tested in a porcine ex vivo model, using a widely available clinical ophthalmic imaging device.
Results: AMDX-9101 hyper-fluoresced in the presence of TTR amyloid in vitro, labeled TTR amyloid deposits in postmortem human conjunctiva and other ocular tissues and could be detected under the conjunctiva of a porcine eye using commercially available ophthalmic imaging equipment.
Conclusions: AMDX-9101 enabled detection of TTR amyloid in the conjunctiva, and the fluorescent binding signal can be visualized using commercially available ophthalmic imaging equipment.
Translational Relevance: AMDX-9101 detection of TTR amyloid may provide a potential new and noninvasive test for ATTR that could lead to earlier ATTR diagnosis, as well as facilitate development of new therapeutics.

References

  1. Am J Pathol. 1984 Dec;117(3):391-9 [PMID: 6507586]
  2. J Alzheimers Dis. 2022;88(3):1137-1145 [PMID: 35754278]
  3. Leukemia. 2020 May;34(5):1215-1228 [PMID: 32269317]
  4. Circ Heart Fail. 2016 Sep;9(9): [PMID: 27618856]
  5. J Am Coll Cardiol. 2019 Jul 9;74(1):15-23 [PMID: 31272537]
  6. J Neurol. 2018 Apr;265(4):976-983 [PMID: 29249054]
  7. Lancet. 2016 Jun 25;387(10038):2641-2654 [PMID: 26719234]
  8. Cardiol Ther. 2021 Jun;10(1):141-159 [PMID: 33877591]
  9. J Intern Med. 2021 Mar;289(3):268-292 [PMID: 32929754]
  10. Brain. 1952 Sep;75(3):408-27 [PMID: 12978172]
  11. JAMA Cardiol. 2022 Oct 1;7(10):1036-1044 [PMID: 36069809]
  12. Cureus. 2021 Apr 18;13(4):e14546 [PMID: 34017661]
  13. Eur Heart J. 2015 Oct 7;36(38):2585-94 [PMID: 26224076]
  14. JAMA Ophthalmol. 2019 Sep 01;137(9):1061-1066 [PMID: 31219510]
  15. Eur J Heart Fail. 2022 Sep;24(9):1677-1696 [PMID: 35730461]
  16. Ophthalmol Sci. 2021 Dec;1(4): [PMID: 35005679]
  17. Int J Cardiol. 2018 Nov 1;270:192-196 [PMID: 29903517]
  18. Eur Heart J. 2017 Jun 21;38(24):1905-1908 [PMID: 28605421]
  19. Eur J Heart Fail. 2020 Mar;22(3):507-515 [PMID: 31975495]
  20. Nat Rev Neurol. 2019 Jul;15(7):387-404 [PMID: 31209302]
  21. Circ Heart Fail. 2019 Sep;12(9):e006075 [PMID: 31480867]
  22. Molecules. 2020 Dec 03;25(23): [PMID: 33287192]
  23. Circ Genom Precis Med. 2021 Oct;14(5):e003356 [PMID: 34461737]
  24. Brain. 1999 Oct;122 ( Pt 10):1951-62 [PMID: 10506096]
  25. Curr Cardiovasc Risk Rep. 2021 Jun;15(6): [PMID: 35280930]
  26. Amyloid. 2002 Sep;9(3):183-9 [PMID: 12408681]
  27. Circ Cardiovasc Imaging. 2013 Mar 1;6(2):195-201 [PMID: 23400849]
  28. Amyloid. 2015;22(3):171-4 [PMID: 26123279]
  29. JACC CardioOncol. 2022 Nov 15;4(4):442-454 [PMID: 36444226]
  30. J Am Coll Cardiol. 2019 Jun 11;73(22):2872-2891 [PMID: 31171094]
  31. Cardiovasc Res. 2023 Feb 3;118(18):3517-3535 [PMID: 35929637]
  32. Virchows Arch A Pathol Anat Histopathol. 1989;415(3):259-63 [PMID: 2503927]
  33. JAMA. 2019 Dec 10;322(22):2191-2202 [PMID: 31821430]
  34. JACC Cardiovasc Imaging. 2014 May;7(5):531-2 [PMID: 24831216]
  35. Int J Cardiol. 2020 Aug 1;312:96-97 [PMID: 32505334]
  36. Biomedicines. 2019 Feb 05;7(1): [PMID: 30764529]
  37. Methodist Debakey Cardiovasc J. 2022 Mar 14;18(2):17-26 [PMID: 35414855]
  38. Ann Transl Med. 2021 Mar;9(6):519 [PMID: 33850916]
  39. Neurol Ther. 2020 Dec;9(2):317-333 [PMID: 32948978]
  40. Front Cardiovasc Med. 2022 May 17;9:863179 [PMID: 35656395]
  41. J Card Fail. 2018 Feb;24(2):131-133 [PMID: 29305186]
  42. Semin Ophthalmol. 2020 Jan 2;35(1):7-26 [PMID: 31829761]
  43. JAMA Cardiol. 2016 Nov 1;1(8):880-889 [PMID: 27557400]
  44. Ophthalmology. 2016 Dec;123(12):2456-2461 [PMID: 27633646]
  45. Amyloid. 2015;22(2):117-22 [PMID: 26096568]
  46. Orphanet J Rare Dis. 2021 Jan 11;16(1):25 [PMID: 33430941]
  47. Invest Ophthalmol Vis Sci. 1990 Mar 1;31(3):497-501 [PMID: 1690688]
  48. Amyloid. 2018 Dec;25(4):215-219 [PMID: 30614283]
  49. Neurologist. 2021 Sep 7;26(5):189-195 [PMID: 34491937]
  50. Ann Pharmacother. 2020 May;54(5):470-477 [PMID: 31735059]
  51. Genet Med. 2017 Jul;19(7):733-742 [PMID: 28102864]
  52. Am J Manag Care. 2017 Jun;23(7 Suppl):S107-S112 [PMID: 28978215]
  53. BioDrugs. 2023 Mar;37(2):127-142 [PMID: 36795354]
  54. Exp Eye Res. 2020 Jul;196:108049 [PMID: 32387381]
  55. J Am Coll Cardiol. 2016 Jul 12;68(2):161-72 [PMID: 27386769]
  56. BMC Fam Pract. 2020 Sep 23;21(1):198 [PMID: 32967612]
  57. Int J Mol Sci. 2021 Dec 30;23(1): [PMID: 35008816]
  58. Arch Neurol. 2002 Nov;59(11):1771-6 [PMID: 12433265]
  59. Eur J Haematol. 2020 Sep;105(3):352-356 [PMID: 32495369]
  60. Clin Sci (Lond). 2017 Mar 1;131(5):395-409 [PMID: 28213611]
  61. Biomedicines. 2022 Aug 06;10(8): [PMID: 36009453]
  62. Curr Oncol Rep. 2023 Jun;25(6):549-558 [PMID: 36943555]
  63. FEBS Lett. 2012 Nov 30;586(23):4215-22 [PMID: 23108050]
  64. Healthcare (Basel). 2020 Apr 12;8(2): [PMID: 32290596]

MeSH Term

Humans
Animals
Swine
Aged
Plaque, Amyloid
Amyloid Neuropathies, Familial
Congo Red
Conjunctiva

Chemicals

Congo Red

Word Cloud

Created with Highcharts 10.0.0TTRamyloidAMDX-9101ATTRconjunctivausingeyeimagingcannewvitroavailableophthalmicdiagnosisstudytestwhetherdetectedfluorescentocularincubatedaggregatedpatientdepositshumanlabeledporcinecommerciallyequipmentdetectionBackground:TransthyretinamyloidosissignificantcausecardiomyopathymorbiditieselderlyBlackAmericanstreateddisease-modifyingtherapieslargeshortfallsexistobjectiveimagednovelsmall-moleculetracerimplicationmightdiagnosablesimpleexaminationMethods:ThreeapproachesusedFirstproteinchangesexcitationemissionspectraquantifiedSecondcadaverfamilialpolyneuropathytypeIImutationvitrectomysamplehATTRcounterstainedCongoRedantibodiesdeterminelabelsdisease-relatedLasttestedexvivomodelwidelyclinicaldeviceResults:hyper-fluorescedpresencepostmortemtissuesConclusions:enabledbindingsignalvisualizedTranslationalRelevance:mayprovidepotentialnoninvasiveleadearlierwellfacilitatedevelopmenttherapeuticsDetectionAmyloidConjunctivaUsingNovelFluorescentOcularTracer

Similar Articles

Cited By

No available data.