Role of phosphatidic acid lipids on plasma membrane association of the Ebola virus matrix protein VP40.

Michael D Cioffi, Monica L Husby, Bernard S Gerstman, Robert V Stahelin, Prem P Chapagain
Author Information
  1. Michael D Cioffi: Department of Physics, Florida International University, Miami, FL 33199, USA.
  2. Monica L Husby: Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
  3. Bernard S Gerstman: Department of Physics, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
  4. Robert V Stahelin: Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; The Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA. Electronic address: rstaheli@purdue.edu.
  5. Prem P Chapagain: Department of Physics, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA. Electronic address: chapagap@fiu.edu.

Abstract

The Ebola virus matrix protein VP40 is responsible for the formation of the viral matrix by localizing at the inner leaflet of the human plasma membrane (PM). Various lipid types, including PI(4,5)P (i.e. PIP) and phosphatidylserine (PS), play active roles in this process. Specifically, the negatively charged headgroups of both PIP and PS interact with the basic residues of VP40 and stabilize it at the membrane surface, allowing for eventual egress. Phosphatidic acid (PA), resulting from the enzyme phospholipase D (PLD), is also known to play an active role in viral development. In this work, we performed a biophysical and computational analysis to investigate the effects of the presence of PA on the membrane localization and association of VP40. We used coarse-grained molecular dynamics simulations to quantify VP40 hexamer interactions with the inner leaflet of the PM. Analysis of the local distribution of lipids shows enhanced lipid clustering when PA is abundant in the membrane. We observed that PA lipids have a similar role to that of PS lipids in VP40 association due to the geometry and charge. Complementary experiments performed in cell culture demonstrate competition between VP40 and a canonical PA-binding protein for the PM. Also, inhibition of PA synthesis reduced the detectable budding of virus-like particles. These computational and experimental results provide new insights into the early stages of Ebola virus budding and the role that PA lipids have on the VP40-PM association.

Keywords

References

  1. Biophys J. 2001 Jan;80(1):505-15 [PMID: 11159421]
  2. J Biol Chem. 2013 Feb 22;288(8):5779-89 [PMID: 23297401]
  3. Front Microbiol. 2014 Jun 18;5:300 [PMID: 24995005]
  4. J Vis Exp. 2022 Mar 1;(181): [PMID: 35311814]
  5. J Virol. 2015 Sep;89(18):9440-53 [PMID: 26136573]
  6. PLoS Comput Biol. 2013 Apr;9(4):e1003033 [PMID: 23592975]
  7. Antiviral Res. 2009 Mar;81(3):189-97 [PMID: 19114059]
  8. Bioorg Med Chem Lett. 2009 Apr 15;19(8):2240-3 [PMID: 19299128]
  9. PLoS Comput Biol. 2014 Oct 23;10(10):e1003911 [PMID: 25340788]
  10. J Biol Chem. 2021 Jan-Jun;296:100796 [PMID: 34019871]
  11. J Phys Chem B. 2007 Jul 12;111(27):7812-24 [PMID: 17569554]
  12. Chem Soc Rev. 2013 Aug 21;42(16):6801-22 [PMID: 23708257]
  13. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  14. Front Mol Biosci. 2020 Aug 25;7:210 [PMID: 33195399]
  15. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17367-72 [PMID: 18987307]
  16. Arch Virol Suppl. 2008;20:13-360 [PMID: 18637412]
  17. Microorganisms. 2020 Apr 24;8(4): [PMID: 32344564]
  18. J Chem Theory Comput. 2008 May;4(5):819-34 [PMID: 26621095]
  19. J Virol. 2001 Jun;75(11):5205-14 [PMID: 11333902]
  20. J Chem Theory Comput. 2015 Sep 8;11(9):4486-94 [PMID: 26575938]
  21. Curr Protoc Bioinformatics. 2016 Jun 20;54:5.6.1-5.6.37 [PMID: 27322406]
  22. Trends Pharmacol Sci. 2015 Mar;36(3):137-44 [PMID: 25661257]
  23. J Chem Theory Comput. 2019 Oct 8;15(10):5448-5460 [PMID: 31498621]
  24. J Biol Chem. 2014 Nov 28;289(48):33590-7 [PMID: 25315776]
  25. J Biol Chem. 2018 Mar 2;293(9):3335-3349 [PMID: 29348171]
  26. Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24 [PMID: 18216768]
  27. Future Virol. 2015 May;10(5):537-546 [PMID: 26120351]
  28. J Biol Chem. 2017 Mar 10;292(10):4266-4279 [PMID: 28115519]
  29. Biochem J. 1993 Aug 15;294 ( Pt 1):1-14 [PMID: 8363559]
  30. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  31. Methods Mol Biol. 2008;426:145-59 [PMID: 18542861]
  32. Viruses. 2020 Apr 24;12(4): [PMID: 32344654]
  33. BMC Biol. 2011 Dec 02;9:85 [PMID: 22136116]
  34. J Virol. 2002 May;76(10):4855-65 [PMID: 11967302]
  35. Lancet. 2011 Mar 5;377(9768):849-62 [PMID: 21084112]
  36. Cell. 2013 Aug 15;154(4):763-74 [PMID: 23953110]
  37. Bioorg Med Chem Lett. 2014 Dec 15;24(24):5553-5557 [PMID: 25466173]
  38. J Lipid Res. 2020 Jul;61(7):971 [PMID: 32295828]
  39. Sci Rep. 2016 Jan 12;6:19125 [PMID: 26753796]
  40. Mol Cell Biol. 2014 Jan;34(1):84-95 [PMID: 24164897]
  41. Biochim Biophys Acta Biomembr. 2017 Oct;1859(10):2012-2020 [PMID: 28711356]
  42. Mol Pharmacol. 2009 Mar;75(3):437-46 [PMID: 19064628]
  43. Phys Chem Chem Phys. 2016 Oct 19;18(41):28409-28417 [PMID: 27757455]
  44. Protein Sci. 2000 Sep;9(9):1753-73 [PMID: 11045621]
  45. Elife. 2020 Oct 05;9: [PMID: 33016878]

Grants

  1. R01 AI158220/NIAID NIH HHS
  2. R21 AI142651/NIAID NIH HHS
  3. S10 OD027043/NIH HHS
  4. T32 GM075762/NIGMS NIH HHS

MeSH Term

Humans
Ebolavirus
Hemorrhagic Fever, Ebola
Cell Membrane
Molecular Dynamics Simulation
Lipids

Chemicals

Lipids

Word Cloud

Created with Highcharts 10.0.0VP40membranePAlipidsEbolavirusproteinassociationmatrixPMPSacidroleviralinnerleafletplasmalipidPIPplayactivePhosphatidicDperformedcomputationalbuddingresponsibleformationlocalizinghumanVarioustypesincludingPI45PiephosphatidylserinerolesprocessSpecificallynegativelychargedheadgroupsinteractbasicresiduesstabilizesurfaceallowingeventualegressresultingenzymephospholipasePLDalsoknowndevelopmentworkbiophysicalanalysisinvestigateeffectspresencelocalizationusedcoarse-grainedmoleculardynamicssimulationsquantifyhexamerinteractionsAnalysislocaldistributionshowsenhancedclusteringabundantobservedsimilarduegeometrychargeComplementaryexperimentscellculturedemonstratecompetitioncanonicalPA-bindingAlsoinhibitionsynthesisreduceddetectablevirus-likeparticlesexperimentalresultsprovidenewinsightsearlystagesVP40-PMRolephosphatidicCoarse-grainedMatrixMolecularDynamicssimulationPhospholipasePlasmaVirus-likeparticle

Similar Articles

Cited By