Direct Detection of the ��-Carbon Radical Intermediate Formed by OspD: Mechanistic Insights into Radical -Adenosyl-l-methionine Peptide Epimerization.

William G Walls, Anna L Vagstad, Tyler Delridge, J��rn Piel, William E Broderick, Joan B Broderick
Author Information
  1. William G Walls: Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States. ORCID
  2. Anna L Vagstad: Institute of Microbiology, Eidgen��ssische Technische Hochschule (ETH) Z��rich, Vladimir-Prelog-Weg 4, Z��rich 8093, Switzerland. ORCID
  3. Tyler Delridge: Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States.
  4. J��rn Piel: Institute of Microbiology, Eidgen��ssische Technische Hochschule (ETH) Z��rich, Vladimir-Prelog-Weg 4, Z��rich 8093, Switzerland.
  5. William E Broderick: Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States. ORCID
  6. Joan B Broderick: Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States. ORCID

Abstract

OspD is a radical -adenosyl-l-methionine (SAM) peptide epimerase that converts an isoleucine (Ile) and valine (Val) of the OspA substrate to d-amino acids during biosynthesis of the ribosomally synthesized and post-translationally modified peptide (RiPP) natural product landornamide A. OspD is proposed to carry out this reaction via ��-carbon (C��) H-atom abstraction to form a peptidyl C�� radical that is stereospecifically quenched by hydrogen atom transfer (HAT) from a conserved cysteine (Cys). Here we use site-directed mutagenesis, freeze-quench trapping, isotopic labeling, and electron paramagnetic resonance (EPR) spectroscopy to provide new insights into the OspD catalytic mechanism including the direct observation of the substrate peptide C�� radical intermediate. The putative quenching Cys334 was changed to serine to generate an OspD C334S variant impaired in HAT quenching. The reaction of reduced OspD C334S with SAM and OspA freeze-quenched at 15 s exhibits a doublet EPR signal characteristic of a C�� radical coupled to a single ��-H. Using isotopologues of OspA deuterated at either Ile or Val, or both Ile and Val, reveals that the initial C�� radical intermediate forms exclusively on the Ile of OspA. Time-dependent freeze quench coupled with EPR spectroscopy provided evidence for loss of the Ile C�� radical concomitant with gain of a Val C�� radical, directly demonstrating the N-to-C directionality of epimerization by OspD. These results provide direct evidence for the aforementioned OspD-catalyzed peptide epimerization mechanism via a central C�� radical intermediate during RiPP maturation of OspA, a mechanism that may extend to other proteusin peptide epimerases.

References

  1. Angew Chem Int Ed Engl. 2020 Jul 13;59(29):11763-11768 [PMID: 32163654]
  2. Nat Chem Biol. 2024 Mar;20(3):382-391 [PMID: 38158457]
  3. J Biol Inorg Chem. 2010 Aug;15(6):943-55 [PMID: 20405152]
  4. Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2314696120 [PMID: 37956301]
  5. Biochemistry. 2016 Aug 2;55(30):4131-4 [PMID: 27410522]
  6. Chem Rev. 2014 Apr 23;114(8):4229-317 [PMID: 24476342]
  7. J Am Chem Soc. 2013 Oct 16;135(41):15404-15416 [PMID: 23991893]
  8. Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2116578119 [PMID: 35316135]
  9. Crit Rev Biochem Mol Biol. 2008 Jan-Feb;43(1):63-88 [PMID: 18307109]
  10. Methods Enzymol. 2018;604:237-257 [PMID: 29779654]
  11. Front Microbiol. 2018 Feb 06;9:156 [PMID: 29467749]
  12. Nucleic Acids Res. 2001 Mar 1;29(5):1097-106 [PMID: 11222759]
  13. Science. 2016 May 13;352(6287):822-5 [PMID: 27174986]
  14. Anal Biochem. 1996 May 1;236(2):302-8 [PMID: 8660509]
  15. ACS Bio Med Chem Au. 2022 Feb 16;2(1):22-35 [PMID: 36119373]
  16. J Am Chem Soc. 2021 Sep 22;143(37):15152-15158 [PMID: 34491039]
  17. J Am Chem Soc. 2023 Jun 28;145(25):13879-13887 [PMID: 37307050]
  18. J Am Chem Soc. 2002 Feb 13;124(6):912-3 [PMID: 11829592]
  19. FEBS Lett. 2023 Jan;597(1):92-101 [PMID: 36251330]
  20. J Biol Chem. 1994 Apr 29;269(17):12432-7 [PMID: 8175649]
  21. J Am Chem Soc. 2018 Aug 1;140(30):9678-9684 [PMID: 29983059]
  22. J Am Chem Soc. 2002 Mar 27;124(12):3143-51 [PMID: 11902903]
  23. Nat Prod Rep. 2013 Jan;30(1):108-60 [PMID: 23165928]
  24. J Am Chem Soc. 2014 Oct 1;136(39):13909-15 [PMID: 25230155]
  25. Biomol Concepts. 2016 Jun 1;7(3):179-87 [PMID: 27159920]
  26. Biochemistry. 2021 Sep 28;60(38):2865-2874 [PMID: 34506710]
  27. Nat Prod Rep. 2018 Jul 18;35(7):660-694 [PMID: 29633774]
  28. Angew Chem Int Ed Engl. 2022 Oct 17;61(42):e202210362 [PMID: 36064953]
  29. Nat Prod Rep. 2021 Jan 1;38(1):130-239 [PMID: 32935693]
  30. J Am Chem Soc. 2022 Mar 23;144(11):5087-5098 [PMID: 35258967]
  31. Arch Biochem Biophys. 2014 Mar 15;546:64-71 [PMID: 24486374]
  32. Nat Commun. 2023 Nov 25;14(1):7734 [PMID: 38007494]
  33. Chemistry. 2012 Feb 20;18(8):2342-8 [PMID: 22266804]
  34. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444 [PMID: 34791371]
  35. Chembiochem. 2014 Apr 14;15(6):826-8 [PMID: 24616055]
  36. J Am Chem Soc. 2002 Sep 25;124(38):11270-1 [PMID: 12236732]
  37. Inorg Chem. 2005 Feb 21;44(4):727-41 [PMID: 15859242]
  38. J Am Chem Soc. 2016 Mar 9;138(9):2889-92 [PMID: 26871608]
  39. J Am Chem Soc. 2018 Feb 21;140(7):2469-2477 [PMID: 29253341]
  40. Angew Chem Int Ed Engl. 2017 Jan 16;56(3):762-766 [PMID: 27958669]
  41. Angew Chem Int Ed Engl. 2014 Aug 4;53(32):8503-7 [PMID: 24943072]
  42. J Am Chem Soc. 2018 Jul 18;140(28):8634-8638 [PMID: 29954180]
  43. Biochem Soc Trans. 2021 Feb 26;49(1):203-215 [PMID: 33439248]
  44. Cell Mol Life Sci. 2021 Apr;78(8):3921-3940 [PMID: 33532865]
  45. Nat Chem. 2017 Apr;9(4):387-395 [PMID: 28338684]
  46. J Magn Reson. 2006 Jan;178(1):42-55 [PMID: 16188474]
  47. Annu Rev Biochem. 2018 Jun 20;87:555-584 [PMID: 29925255]
  48. Curr Opin Biotechnol. 2021 Jun;69:221-231 [PMID: 33556835]
  49. Biol Chem. 2005 Oct;386(10):981-8 [PMID: 16218870]
  50. Front Chem. 2021 Jul 19;9:678068 [PMID: 34350157]
  51. J Am Chem Soc. 2009 Feb 25;131(7):2420-1 [PMID: 19178276]
  52. ACS Synth Biol. 2021 Feb 19;10(2):236-242 [PMID: 33410661]
  53. Curr Opin Microbiol. 2018 Oct;45:61-69 [PMID: 29533845]
  54. Anal Biochem. 1982 May 15;122(2):238-47 [PMID: 7051891]
  55. Annu Rev Biochem. 2023 Jun 20;92:333-349 [PMID: 37018846]
  56. J Am Chem Soc. 2020 Sep 23;142(38):16265-16275 [PMID: 32845143]
  57. Nat Chem Biol. 2016 Nov;12(11):905-907 [PMID: 27642865]
  58. Crit Rev Biochem Mol Biol. 2017 Dec;52(6):674-695 [PMID: 28901199]
  59. Chem Commun (Camb). 2016 May 7;52(37):6249-6252 [PMID: 27087315]
  60. Annu Rev Biochem. 2016 Jun 2;85:485-514 [PMID: 27145839]
  61. Angew Chem Int Ed Engl. 2019 Feb 18;58(8):2246-2250 [PMID: 30521081]
  62. Nat Chem. 2017 Jul;9(7):698-707 [PMID: 28644475]
  63. Microb Physiol. 2021;31(3):306-318 [PMID: 34120110]
  64. Methods Enzymol. 2018;606:269-318 [PMID: 30097096]
  65. Curr Opin Biotechnol. 2023 Apr;80:102891 [PMID: 36702077]
  66. J Biol Chem. 2020 Dec 4;295(49):16665-16677 [PMID: 32972973]
  67. Science. 2012 Oct 19;338(6105):387-90 [PMID: 22983711]

Grants

  1. P20 GM103474/NIGMS NIH HHS
  2. R35 GM131889/NIGMS NIH HHS

MeSH Term

S-Adenosylmethionine
Methionine
Carbon
Peptides
Amino Acids
Racemethionine
Valine

Chemicals

S-Adenosylmethionine
Methionine
Carbon
Peptides
Amino Acids
Racemethionine
Valine

Word Cloud

Created with Highcharts 10.0.0radicalC��OspDpeptideIleOspAValEPRmechanismintermediateSAMsubstrateRiPPreactionviaHATspectroscopyprovidedirectquenchingC334ScoupledevidenceepimerizationRadical-adenosyl-l-methionineepimeraseconvertsisoleucinevalined-aminoacidsbiosynthesisribosomallysynthesizedpost-translationallymodifiednaturalproductlandornamideproposedcarry��-carbonH-atomabstractionformpeptidylstereospecificallyquenchedhydrogenatomtransferconservedcysteineCysusesite-directedmutagenesisfreeze-quenchtrappingisotopiclabelingelectronparamagneticresonancenewinsightscatalyticincludingobservationputativeCys334changedserinegeneratevariantimpairedreducedfreeze-quenched15sexhibitsdoubletsignalcharacteristicsingle��-HUsingisotopologuesdeuteratedeitherrevealsinitialformsexclusivelyTime-dependentfreezequenchprovidedlossconcomitantgaindirectlydemonstratingN-to-CdirectionalityresultsaforementionedOspD-catalyzedcentralmaturationmayextendproteusinepimerasesDirectDetection��-CarbonIntermediateFormedOspD:MechanisticInsights-Adenosyl-l-methioninePeptideEpimerization

Similar Articles

Cited By