Impact of cell wall polysaccharide modifications on the performance of Pichia pastoris: novel mutants with enhanced fitness and functionality for bioproduction applications.

Bingjie Cheng, Keyang Yu, Xing Weng, Zhaojun Liu, Xuewu Huang, Yuhong Jiang, Shuai Zhang, Shuyan Wu, Xiaoyuan Wang, Xiaoqing Hu
Author Information
  1. Bingjie Cheng: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  2. Keyang Yu: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  3. Xing Weng: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  4. Zhaojun Liu: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  5. Xuewu Huang: College of Pharmacy, Guangxi Medical University, Nanning, 530021, China.
  6. Yuhong Jiang: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  7. Shuai Zhang: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  8. Shuyan Wu: Hopkirk Research Institute, AgResearch Ltd, Massey University, University Avenue and Library Road, Palmerston North, 4442, New Zealand.
  9. Xiaoyuan Wang: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  10. Xiaoqing Hu: School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. xiaoqinghu@jiangnan.edu.cn.

Abstract

BACKGROUND: Pichia pastoris is a widely utilized host for heterologous protein expression and biotransformation. Despite the numerous strategies developed to optimize the chassis host GS115, the potential impact of changes in cell wall polysaccharides on the fitness and performance of P. pastoris remains largely unexplored. This study aims to investigate how alterations in cell wall polysaccharides affect the fitness and function of P. pastoris, contributing to a better understanding of its overall capabilities.
RESULTS: Two novel mutants of GS115 chassis, H001 and H002, were established by inactivating the PAS_chr1-3_0225 and PAS_chr1-3_0661 genes involved in β-glucan biosynthesis. In comparison to GS115, both modified hosts exhibited a looser cell surface and larger cell size, accompanied by faster growth rates and higher carbon-to-biomass conversion ratios. When utilizing glucose, glycerol, and methanol as exclusive carbon sources, the carbon-to-biomass conversion rates of H001 surpassed GS115 by 10.00%, 9.23%, and 33.33%, respectively. Similarly, H002 exhibited even higher increases of 32.50%, 12.31%, and 53.33% in carbon-to-biomass conversion compared to GS115 under the same carbon sources. Both chassis displayed elevated expression levels of green fluorescent protein (GFP) and human epidermal growth factor (hegf). Compared to GS115/pGAPZ A-gfp, H002/pGAPZ A-gfp showed a 57.64% higher GFP expression, while H002/pPICZα A-hegf produced 66.76% more hegf. Additionally, both mutant hosts exhibited enhanced biosynthesis efficiencies of S-adenosyl-L-methionine and ergothioneine. H001/pGAPZ A-sam2 synthesized 21.28% more SAM at 1.14 g/L compared to GS115/pGAPZ A-sam2, and H001/pGAPZ A-egt1E obtained 45.41% more ERG at 75.85 mg/L. The improved performance of H001 and H002 was likely attributed to increased supplies of NADPH and ATP. Specifically, H001 and H002 exhibited 5.00-fold and 1.55-fold higher ATP levels under glycerol, and 6.64- and 1.47-times higher ATP levels under methanol, respectively, compared to GS115. Comparative lipidomic analysis also indicated that the mutations generated richer unsaturated lipids on cell wall, leading to resilience to oxidative damage.
CONCLUSIONS: Two novel P. pastoris chassis hosts with impaired β-1,3-D-glucan biosynthesis were developed, showcasing enhanced performances in terms of growth rate, protein expression, and catalytic capabilities. These hosts exhibit the potential to serve as attractive alternatives to P. pastoris GS115 for various bioproduction applications.

Keywords

References

  1. FEMS Yeast Res. 2012 Dec;12(8):969-79 [PMID: 22943416]
  2. Biotechnol J. 2019 Jun;14(6):e1800694 [PMID: 31066190]
  3. J Biotechnol. 2016 Oct 10;235:139-49 [PMID: 27015975]
  4. J Fungi (Basel). 2021 Feb 06;7(2): [PMID: 33562124]
  5. J Biosci Bioeng. 2020 Oct;130(4):335-340 [PMID: 32650974]
  6. Front Microbiol. 2022 Jul 28;13:953479 [PMID: 35966694]
  7. Eukaryot Cell. 2007 Dec;6(12):2184-93 [PMID: 17933909]
  8. Front Microbiol. 2015 Oct 27;6:1185 [PMID: 26579093]
  9. BMC Biotechnol. 2004 Apr 21;4:8 [PMID: 15102338]
  10. mBio. 2023 Oct 31;14(5):e0061723 [PMID: 37606451]
  11. Biotechnol Bioeng. 1989 Mar;33(8):976-83 [PMID: 18588011]
  12. Enzyme Microb Technol. 2022 Oct;160:110090 [PMID: 35780701]
  13. J Biotechnol. 2016 Oct 10;235:84-91 [PMID: 27287536]
  14. EFSA J. 2022 Jan 27;20(1):e07045 [PMID: 35126735]
  15. Cell Discov. 2021 Aug 18;7(1):71 [PMID: 34408130]
  16. Methods Mol Biol. 2018;1721:105-115 [PMID: 29423851]
  17. Metab Eng. 2018 Nov;50:2-15 [PMID: 29704654]
  18. Microb Cell Fact. 2017 May 19;16(1):86 [PMID: 28526017]
  19. Biotechnol Adv. 2018 Jan - Feb;36(1):182-195 [PMID: 29129652]
  20. Synth Syst Biotechnol. 2021 May 03;6(2):110-119 [PMID: 33997361]
  21. ACS Synth Biol. 2021 Aug 20;10(8):2076-2086 [PMID: 34319697]
  22. PLoS One. 2012;7(6):e39720 [PMID: 22768112]
  23. J Biol Chem. 2008 Jul 4;283(27):18553-65 [PMID: 18468997]
  24. Biotechnol Biofuels. 2019 Mar 22;12:63 [PMID: 30949239]
  25. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7212-6 [PMID: 3903748]
  26. Cell Surf. 2018 Oct 17;4:1-9 [PMID: 32743131]
  27. Curr Opin Biotechnol. 2019 Oct;59:175-181 [PMID: 31470258]
  28. J Biotechnol. 2001 Mar 9;86(1):59-70 [PMID: 11223145]
  29. Nature. 2023 Apr;616(7955):190-198 [PMID: 36949198]
  30. Microbiol Mol Biol Rev. 2008 Sep;72(3):495-544 [PMID: 18772287]
  31. Mar Drugs. 2014 Mar 13;12(3):1495-511 [PMID: 24633251]
  32. Adv Microb Physiol. 1982;23:151-81 [PMID: 6214161]
  33. Bio Protoc. 2019 Jun 20;9(12):e3263 [PMID: 33654783]
  34. Biotechnol Bioeng. 2016 May;113(5):961-9 [PMID: 26480251]
  35. Methods Mol Biol. 2022;2513:153-177 [PMID: 35781205]
  36. Microb Cell Fact. 2021 Mar 20;20(1):73 [PMID: 33743682]
  37. Yeast. 2002 Jun 15;19(8):671-90 [PMID: 12185837]
  38. Appl Environ Microbiol. 2011 Jun;77(11):3600-8 [PMID: 21498769]
  39. Biotechnol Biofuels Bioprod. 2022 Dec 29;15(1):150 [PMID: 36581872]
  40. Braz J Microbiol. 2017 Apr - Jun;48(2):286-293 [PMID: 27998673]
  41. J Biotechnol. 2008 Oct 10;137(1-4):44-9 [PMID: 18804886]
  42. Microb Cell Fact. 2022 Jun 3;21(1):112 [PMID: 35659241]
  43. J Basic Microbiol. 2016 Sep;56(9):1021-35 [PMID: 27214006]
  44. J Chromatogr. 1984 May 4;290:247-62 [PMID: 6736164]
  45. ACS Synth Biol. 2023 Oct 20;12(10):2961-2972 [PMID: 37782893]
  46. Front Bioeng Biotechnol. 2019 Oct 11;7:262 [PMID: 31681742]
  47. Prep Biochem Biotechnol. 2017 Apr 21;47(4):364-370 [PMID: 27813720]
  48. Ecotoxicol Environ Saf. 2018 May 29;161:1-7 [PMID: 29857228]
  49. PLoS One. 2017 Jul 17;12(7):e0181370 [PMID: 28715469]
  50. Bioresour Technol. 2018 Feb;249:49-56 [PMID: 29040859]
  51. Int J Biol Macromol. 1997 Aug;21(1-2):11-4 [PMID: 9283010]
  52. Enzyme Microb Technol. 2020 Feb;133:109459 [PMID: 31874694]
  53. Chromatographia. 2016;79(21):1527-1532 [PMID: 27867207]
  54. Nat Microbiol. 2021 Jul;6(7):874-884 [PMID: 34017107]
  55. Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2136-41 [PMID: 19174513]
  56. Biotechniques. 2005 Jan;38(1):44, 46, 48 [PMID: 15679083]
  57. Enzyme Microb Technol. 2014 Feb 5;55:94-9 [PMID: 24411450]

Grants

  1. 2018YFA0900302/National Key Research and Development Program of China
  2. 2018YFA0900302/National Key Research and Development Program of China
  3. 2018YFA0900302/National Key Research and Development Program of China
  4. 2018YFA0900302/National Key Research and Development Program of China
  5. 2018YFA0900302/National Key Research and Development Program of China
  6. 2018YFA0900302/National Key Research and Development Program of China
  7. 2018YFA0900302/National Key Research and Development Program of China
  8. 2018YFA0900302/National Key Research and Development Program of China
  9. 2018YFA0900302/National Key Research and Development Program of China
  10. 2018YFA0900302/National Key Research and Development Program of China

MeSH Term

Humans
Pichia
Methanol
Glycerol
Adenosine Triphosphate
Carbon
Cell Wall
Polysaccharides
Recombinant Proteins
Saccharomycetales

Chemicals

Methanol
Glycerol
Adenosine Triphosphate
Carbon
Polysaccharides
Recombinant Proteins

Word Cloud

Created with Highcharts 10.0.0GS115pastoriscellwallhigherexpressionchassisPH001H002hostsexhibitedgrowthconversionATPPichiaproteinfitnessperformancenovelbiosynthesiscarbon-to-biomasscomparedlevelsenhanced1hostdevelopedpotentialpolysaccharidescapabilitiesTwomutantsratesglycerolmethanolcarbonsources33%respectivelyGFPepidermalfactorhegfGS115/pGAPZA-gfpS-adenosyl-L-methionineH001/pGAPZA-sam2lipidsβ-13-D-glucanbioproductionapplicationsBACKGROUND:widelyutilizedheterologousbiotransformationDespitenumerousstrategiesoptimizeimpactchangesremainslargelyunexploredstudyaimsinvestigatealterationsaffectfunctioncontributingbetterunderstandingoverallRESULTS:establishedinactivatingPAS_chr1-3_0225PAS_chr1-3_0661genesinvolvedβ-glucancomparisonmodifiedloosersurfacelargersizeaccompaniedfasterratiosutilizingglucoseexclusivesurpassed1000%923%33Similarlyevenincreases3250%1231%53displayedelevatedgreenfluorescenthumanComparedH002/pGAPZshowed5764%H002/pPICZαA-hegfproduced6676%Additionallymutantefficienciesergothioneinesynthesized2128%SAM14 g/LA-egt1Eobtained4541%ERG7585 mg/LimprovedlikelyattributedincreasedsuppliesNADPHSpecifically500-fold55-fold664-47-timesComparativelipidomicanalysisalsoindicatedmutationsgeneratedricherunsaturatedleadingresilienceoxidativedamageCONCLUSIONS:impairedshowcasingperformancestermsratecatalyticexhibitserveattractivealternativesvariousImpactpolysaccharidemodificationspastoris:functionalityCarbonratioCellErgothioneineHumanUnsaturatedsynthase

Similar Articles

Cited By