Translatable plasma and CSF biomarkers for use in mouse models of Huntington's disease.

Marie K Bondulich, Jemima Phillips, María Cañibano-Pico, Iulia M Nita, Lauren M Byrne, Edward J Wild, Gillian P Bates
Author Information
  1. Marie K Bondulich: Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK. ORCID
  2. Jemima Phillips: Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK. ORCID
  3. María Cañibano-Pico: Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK.
  4. Iulia M Nita: Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK.
  5. Lauren M Byrne: Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK.
  6. Edward J Wild: Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK.
  7. Gillian P Bates: Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK. ORCID

Abstract

Huntington's disease is an inherited neurodegenerative disorder for which a wide range of disease-modifying therapies are in development and the availability of biomarkers to monitor treatment response is essential for the success of clinical trials. Baseline levels of neurofilament light chain in CSF and plasma have been shown to be effective in predicting clinical disease status, subsequent clinical progression and brain atrophy. The identification of further sensitive prognostic fluid biomarkers is an active research area, and total-Tau and levels have been shown to be increased in CSF from Huntington's disease mutation carriers. The use of readouts with clinical utility in the preclinical assessment of potential therapeutics should aid in the translation of new treatments. Here, we set out to determine how the concentrations of these three proteins change in plasma and CSF with disease progression in representative, well-established mouse models of Huntington's disease. Plasma and CSF were collected throughout disease progression from R6/2 transgenic mice with CAG repeats of 200 or 90 codons (R6/2:Q200 and R6/2:Q90), zQ175 knock-in mice and YAC128 transgenic mice, along with their respective wild-type littermates. Neurofilament light chain and total-Tau concentrations were quantified in CSF and plasma using ultrasensitive single-molecule array (Quanterix) assays, and a novel Quanterix assay was developed for breast regression protein 39 (mouse homologue of YKL-40) and used to quantify breast regression protein 39 levels in plasma. CSF levels of neurofilament light chain and plasma levels of neurofilament light chain and breast regression protein 39 increased in wild-type biofluids with age, whereas total-Tau remained constant. Neurofilament light chain and breast regression protein 39 were elevated in the plasma and CSF from Huntington's disease mouse models, as compared with wild-type littermates, at presymptomatic stages, whereas total-Tau was only increased at the latest disease stages analysed. Levels of biomarkers that had been measured in the same CSF or plasma samples taken at the latest stages of disease were correlated. The demonstration that breast regression protein 39 constitutes a robust plasma biomarker in Huntington's disease mouse models supports the further investigation of as a CSF biomarker for Huntington's disease mutation carriers. Neurofilament light chain and Tau are considered markers of neuronal damage, and breast regression protein 39 is a marker of inflammation; the similarities and differences in the levels of these proteins between mouse models may provide future insights into their underlying pathology. These data will facilitate the use of fluid biomarkers in the preclinical assessment of therapeutic agents for Huntington's disease, providing readouts with direct relevance to clinical trials.

Keywords

References

  1. Neurobiol Dis. 2011 Jul;43(1):257-65 [PMID: 21458571]
  2. Hum Mol Genet. 2015 Jan 1;24(1):86-99 [PMID: 25205109]
  3. PLoS One. 2016 Sep 22;11(9):e0163479 [PMID: 27657730]
  4. Cell. 1993 Mar 26;72(6):971-83 [PMID: 8458085]
  5. Curr Top Behav Neurosci. 2015;22:33-80 [PMID: 25300927]
  6. Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3498-503 [PMID: 14993615]
  7. Hum Mol Genet. 2009 Aug 15;18(16):3039-47 [PMID: 19465745]
  8. Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2366-70 [PMID: 23341618]
  9. Cell. 2015 Jul 30;162(3):516-26 [PMID: 26232222]
  10. Nature. 1994 Jun 9;369(6480):488-91 [PMID: 8202139]
  11. Sci Rep. 2017 Oct 26;7(1):14114 [PMID: 29074982]
  12. PLoS One. 2012;7(12):e49838 [PMID: 23284626]
  13. Dan Med Bull. 2006 May;53(2):172-209 [PMID: 17087877]
  14. Hum Mol Genet. 1993 Oct;2(10):1535-40 [PMID: 8268906]
  15. Nat Neurosci. 2016 Apr;19(4):623-33 [PMID: 26900923]
  16. Brain. 2022 Dec 19;145(12):4409-4424 [PMID: 35793238]
  17. Hum Mol Genet. 2003 Dec 15;12(24):3359-67 [PMID: 14570710]
  18. Neurobiol Dis. 2009 Sep;35(3):319-36 [PMID: 19464370]
  19. Nat Med. 2014 Aug;20(8):881-5 [PMID: 25038828]
  20. Lancet Neurol. 2017 Sep;16(9):701-711 [PMID: 28642124]
  21. Brain Commun. 2021 Jan 05;3(1):fcaa231 [PMID: 33604571]
  22. Parkinsonism Relat Disord. 2014 Nov;20(11):1301-3 [PMID: 25219973]
  23. PLoS Genet. 2013 Oct;9(10):e1003930 [PMID: 24204323]
  24. Lung Cancer. 2005 May;48(2):223-31 [PMID: 15829322]
  25. Lancet Neurol. 2022 Jul;21(7):632-644 [PMID: 35716693]
  26. Nat Commun. 2020 Feb 10;11(1):812 [PMID: 32041951]
  27. Hum Mol Genet. 2007 May 15;16(10):1133-42 [PMID: 17409200]
  28. Brain. 2015 Jul;138(Pt 7):1907-18 [PMID: 25953777]
  29. Biol Psychiatry. 2010 Nov 15;68(10):903-12 [PMID: 21035623]
  30. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3467-72 [PMID: 18299573]
  31. Nat Genet. 1999 Dec;23(4):471-3 [PMID: 10581038]
  32. Brain Commun. 2020 Aug 03;2(2):fcaa066 [PMID: 32954323]
  33. Neurobiol Dis. 2011 Oct;44(1):1-8 [PMID: 21624468]
  34. Prog Neurobiol. 2008 Jun;85(2):148-75 [PMID: 18448228]
  35. Cell. 1996 Nov 1;87(3):493-506 [PMID: 8898202]
  36. Cell Tissue Res. 2015 Jun;360(3):609-20 [PMID: 25567110]
  37. Eur J Biochem. 1998 Jan 15;251(1-2):504-9 [PMID: 9492324]
  38. Methods Mol Biol. 2018;1780:97-120 [PMID: 29856016]
  39. J Neurotrauma. 2010 Jul;27(7):1215-23 [PMID: 20486806]
  40. PLoS One. 2012;7(12):e50717 [PMID: 23284644]
  41. Mov Disord. 2014 Sep 15;29(11):1359-65 [PMID: 25154728]
  42. Adv Anat Embryol Cell Biol. 2015;217:1-146 [PMID: 26767207]
  43. Hum Mol Genet. 2012 May 15;21(10):2219-32 [PMID: 22328089]
  44. EBioMedicine. 2023 Jul;93:104646 [PMID: 37315450]
  45. J Neurosci. 1999 Apr 1;19(7):2522-34 [PMID: 10087066]
  46. Acta Neuropathol Commun. 2017 Nov 29;5(1):90 [PMID: 29187238]
  47. Lancet Neurol. 2017 Aug;16(8):601-609 [PMID: 28601473]
  48. J Biol Chem. 1993 Dec 5;268(34):25803-10 [PMID: 8245017]
  49. Hum Mol Genet. 2003 Jul 1;12(13):1555-67 [PMID: 12812983]
  50. Am J Pathol. 2008 Jul;173(1):130-43 [PMID: 18556781]
  51. Neuron. 2012 Jun 21;74(6):1031-44 [PMID: 22726834]
  52. J Neurochem. 2021 Jul;158(2):94-104 [PMID: 33569813]
  53. J Neurosci. 2011 Feb 16;31(7):2511-25 [PMID: 21325519]
  54. J Clin Invest. 2015 May;125(5):1979-86 [PMID: 25844897]
  55. Acta Neuropathol. 2018 Feb;135(2):249-265 [PMID: 29134321]
  56. Brain Res. 2003 Oct 10;987(1):25-31 [PMID: 14499942]
  57. Biochem J. 2014 May 1;459(3):479-88 [PMID: 24512683]
  58. Mov Disord. 2022 Jul;37(7):1526-1531 [PMID: 35437792]
  59. Nat Genet. 1993 Aug;4(4):387-92 [PMID: 8401587]
  60. J Neurochem. 2016 Oct;139(1):22-5 [PMID: 27344050]
  61. Cell. 2019 Aug 8;178(4):887-900.e14 [PMID: 31398342]
  62. Nat Med. 2019 Jul;25(7):1131-1142 [PMID: 31263285]
  63. Hum Mol Genet. 2017 Oct 1;26(19):3859-3867 [PMID: 28934397]
  64. J Neurosci. 2005 Apr 20;25(16):4169-80 [PMID: 15843620]
  65. Clin Chim Acta. 2022 Oct 1;535:153-156 [PMID: 36041549]
  66. Brain Commun. 2022 Nov 25;4(6):fcac309 [PMID: 36523269]
  67. J Neuroinflammation. 2010 Jun 11;7:34 [PMID: 20540736]
  68. PLoS One. 2009 Nov 30;4(11):e8025 [PMID: 19956633]
  69. Brain Commun. 2023 Jan 20;5(1):fcad010 [PMID: 36756307]
  70. J Neurol Neurosurg Psychiatry. 2019 Aug;90(8):870-881 [PMID: 30967444]
  71. Neuron. 2019 Mar 6;101(5):801-819 [PMID: 30844400]
  72. Lancet Neurol. 2022 Jul;21(7):645-658 [PMID: 35716694]
  73. Science. 1997 Sep 26;277(5334):1990-3 [PMID: 9302293]
  74. Brain Pathol. 2012 Jul;22(4):530-46 [PMID: 22074331]
  75. J Biol Chem. 1995 Jun 2;270(22):13076-83 [PMID: 7768902]
  76. Nat Rev Dis Primers. 2015 Apr 23;1:15005 [PMID: 27188817]
  77. Sci Rep. 2017 May 2;7(1):1307 [PMID: 28465506]
  78. Eur Heart J. 2009 May;30(9):1066-72 [PMID: 19270316]
  79. Sci Transl Med. 2020 Dec 16;12(574): [PMID: 33328328]

Word Cloud

Created with Highcharts 10.0.0diseaseCSFplasmaHuntington'slightchainmousebiomarkerslevelsbreastregressionprotein39clinicalmodelsneurofilamenttotal-Tauprogressionincreasedusemicewild-typeNeurofilamentstagestrialsshownfluidmutationcarriersreadoutspreclinicalassessmentconcentrationsproteinstransgeniclittermatesQuanterixYKL-40whereaslatestbiomarkerTauinheritedneurodegenerativedisorderwiderangedisease-modifyingtherapiesdevelopmentavailabilitymonitortreatmentresponseessentialsuccessBaselineeffectivepredictingstatussubsequentbrainatrophyidentificationsensitiveprognosticactiveresearchareautilitypotentialtherapeuticsaidtranslationnewtreatmentssetdeterminethreechangerepresentativewell-establishedPlasmacollectedthroughoutR6/2CAGrepeats20090codonsR6/2:Q200R6/2:Q90zQ175knock-inYAC128alongrespectivequantifiedusingultrasensitivesingle-moleculearrayassaysnovelassaydevelopedhomologueusedquantifybiofluidsageremainedconstantelevatedcomparedpresymptomaticanalysedLevelsmeasuredsamplestakencorrelateddemonstrationconstitutesrobustsupportsinvestigationconsideredmarkersneuronaldamagemarkerinflammationsimilaritiesdifferencesmayprovidefutureinsightsunderlyingpathologydatawillfacilitatetherapeuticagentsprovidingdirectrelevanceTranslatableHuntington’sBRP-39

Similar Articles

Cited By (5)