Xueyi Guan: Department of Pediatric Neurosurgery Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. ORCID
Wenjian Zheng: Department of Pediatric Neurosurgery Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Kaiyu Fan: Department of Pediatric Neurosurgery Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Xu Han: Department of Pediatric Neurosurgery Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Bohan Hu: Department of Pediatric Neurosurgery Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Xiang Li: Department of Pediatric Neurosurgery Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Zihan Yan: Department of Pediatric Neurosurgery Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Zheng Lu: Department of Pediatric Neurosurgery Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Jian Gong: Department of Pediatric Neurosurgery Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. gongjian88@tom.com. ORCID
We explored the structural and functional changes of the healthy hemisphere of the brain after surgery in children with intracranial space-occupying lesions. We enrolled 32 patients with unilateral intracranial space-occupying lesions for brain imaging and cognitive assessment. Voxel-based morphometry and surface-based morphometry analyses were used to investigate the structural images of the healthy hemisphere. Functional images were analyzed using regional homogeneity, amplitude of low-frequency fluctuations, and fractional-amplitude of low-frequency fluctuations. Voxel-based morphometry and surface-based morphometry analysis used the statistical model built into the CAT 12 toolbox. Paired t-tests were used for functional image and cognitive test scores. For structural image analysis, we used family-wise error correction of peak level (p < 0.05), and for functional image analysis, we use Gaussian random-field theory correction (voxel p < 0.001, cluster p < 0.05). We found an increase in gray matter volume in the healthy hemisphere within six months postoperatively, mainly in the frontal lobe. Regional homogeneity and fractional-amplitude of low-frequency fluctuations also showed greater functional activity in the frontal lobe. The results of cognitive tests showed that psychomotor speed and motor speed decreased significantly after surgery, and reasoning increased significantly after surgery. We concluded that in children with intracranial space-occupying lesions, the healthy hemisphere exhibits compensatory structural and functional effects within six months after surgery. This effect occurs mainly in the frontal lobe and is responsible for some higher cognitive compensation. This may provide some guidance for the rehabilitation of children after brain surgery.
Ailion, A. S., Hortman, K., & King, T. Z. (2017). Childhood brain tumors: A systematic review of the Structural Neuroimaging Literature. Neuropsychology Review, 27(3), 220–244. https://doi.org/10.1007/s11065-017-9352-6 .
[DOI: 10.1007/s11065-017-9352-6]
Almairac, F., Duffau, H., & Herbet, G. (2018). Contralesional macrostructural plasticity of the insular cortex in patients with glioma: A VBM study. Neurology, 91(20), e1902–e1908. https://doi.org/10.1212/WNL.0000000000006517 .
[DOI: 10.1212/WNL.0000000000006517]
Amieva, H., Meillon, C., Proust-Lima, C., & Dartigues, J. F. (2019). Is low psychomotor speed a marker of Brain vulnerability in late life? Digit symbol substitution test in the prediction of Alzheimer, Parkinson, Stroke, disability, and Depression. Dementia and Geriatric Cognitive Disorders, 47(4–6), 297–305. https://doi.org/10.1159/000500597 .
[DOI: 10.1159/000500597]
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007 .
[DOI: 10.1016/j.neuroimage.2007.07.007]
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018 .
[DOI: 10.1016/j.neuroimage.2005.02.018]
Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: A MATLAB Toolbox for Pipeline Data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13. https://doi.org/10.3389/fnsys.2010.00013 .
[DOI: 10.3389/fnsys.2010.00013]
Cramer, S. C., & Chopp, M. (2000). Recovery recapitulates ontogeny. Trends in Neurosciences, 23(6), 265–271.
[DOI: 10.1016/S0166-2236(00)01562-9]
Dennis, E. L., Faskowitz, J., Rashid, F., Babikian, T., Mink, R., Babbitt, C., & Asarnow, R. F. (2017). Diverging volumetric trajectories following pediatric traumatic brain injury. Neuroimage Clin, 15, 125–135. https://doi.org/10.1016/j.nicl.2017.03.014 .
[DOI: 10.1016/j.nicl.2017.03.014]
Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., & Schlaggar, B. L. (2010). Prediction of individual brain maturity using fMRI. Science, 329(5997), 1358–1361. https://doi.org/10.1126/science.1194144 .
[DOI: 10.1126/science.1194144]
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Changes in grey matter induced by training. Nature, 427(6972), 311–312. https://doi.org/10.1038/427311a .
[DOI: 10.1038/427311a]
Dromerick, A. W., Edwardson, M. A., Edwards, D. F., Giannetti, M. L., Barth, J., Brady, K. P., & Newport, E. L. (2015). Critical periods after stroke study: Translating animal stroke recovery experiments into a clinical trial. Frontiers in Human Neuroscience, 9, 231. https://doi.org/10.3389/fnhum.2015.00231 .
[DOI: 10.3389/fnhum.2015.00231]
Fasotti, L. (2017). Mechanisms of recovery after acquired brain injury. Neuropsychol Rehabil (pp. 25–35). Routledge.
Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346–355. https://doi.org/10.1002/mrm.1910350312 .
[DOI: 10.1002/mrm.1910350312]
Gualtieri, C., & Johnson, L. (2006). Reliability and validity of a computerized neurocognitive test battery, CNS vital Signs. Archives of Clinical Neuropsychology, 21(7), 623–643. https://doi.org/10.1016/j.acn.2006.05.007 .
[DOI: 10.1016/j.acn.2006.05.007]
He, H., & Liu, T. T. (2012). A geometric view of global signal confounds in resting-state functional MRI. Neuroimage, 59(3), 2339–2348. https://doi.org/10.1016/j.neuroimage.2011.09.018 .
[DOI: 10.1016/j.neuroimage.2011.09.018]
Horská, A., Laclair, A., Mohamed, M., Wells, C. T., McNutt, T., Cohen, K. J., & Kates, W. (2010). Low cerebellar vermis volumes and impaired neuropsychologic performance in children treated for brain tumors and leukemia. Ajnr. American Journal of Neuroradiology, 31(8), 1430–1437. https://doi.org/10.3174/ajnr.A2114 .
[DOI: 10.3174/ajnr.A2114]
Huang, Z., Li, G., Li, Z., Sun, S., Zhang, Y., Hou, Z., & Xie, J. (2021). Contralesional Structural plasticity in different molecular pathologic subtypes of Insular Glioma. Frontiers in Neurology, 12, 636573. https://doi.org/10.3389/fneur.2021.636573 .
[DOI: 10.3389/fneur.2021.636573]
Jayakar, R., King, T. Z., Morris, R., & Na, S. (2015). Hippocampal volume and auditory attention on a verbal memory task with adult survivors of pediatric brain tumor. Neuropsychology, 29(2), 303–319. https://doi.org/10.1037/neu0000183 .
[DOI: 10.1037/neu0000183]
Kollen, B. J., Lennon, S., Lyons, B., Wheatley-Smith, L., Scheper, M., Buurke, J. H., & Kwakkel, G. (2009). The effectiveness of the Bobath concept in stroke rehabilitation: What is the evidence? Stroke, 40(4), e89–97. https://doi.org/10.1161/strokeaha.108.533828 .
[DOI: 10.1161/strokeaha.108.533828]
Lee, M. H., Smyser, C. D., & Shimony, J. S. (2013). Resting-state fMRI: A review of methods and clinical applications [Review]. American Journal of Neuroradiology, 34(10), 1866–1872. https://doi.org/10.3174/ajnr.A3263 .
[DOI: 10.3174/ajnr.A3263]
Leung, L. H., Ooi, G. C., Kwong, D. L., Chan, G. C., Cao, G., & Khong, P. L. (2004). White-matter diffusion anisotropy after chemo-irradiation: A statistical parametric mapping study and histogram analysis. Neuroimage, 21(1), 261–268. https://doi.org/10.1016/j.neuroimage.2003.09.020 .
[DOI: 10.1016/j.neuroimage.2003.09.020]
Li, H., Zhao, M., Wang, S., Cao, Y., & Zhao, J. (2016). Prediction of pediatric meningioma recurrence by preoperative MRI assessment. Neurosurgical Review, 39(4), 663–669. https://doi.org/10.1007/s10143-016-0716-9 .
[DOI: 10.1007/s10143-016-0716-9]
Liu, Y., Hu, G., Yu, Y., Jiang, Z., Yang, K., Hu, X., & Chen, J. (2020). Structural and functional reorganization within Cognitive Control Network Associated with Protection of executive function in patients with unilateral frontal gliomas. Frontiers in Oncology, 10, 794. https://doi.org/10.3389/fonc.2020.00794 .
[DOI: 10.3389/fonc.2020.00794]
Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., & Ellison, D. W. (2016). The 2016 World Health Organization classification of tumors of the Central Nervous System: A summary. Acta Neuropathologica, 131(6), 803–820. https://doi.org/10.1007/s00401-016-1545-1 .
[DOI: 10.1007/s00401-016-1545-1]
Louis, D. N., Perry, A., Wesseling, P., Brat, D. J., Cree, I. A., Figarella-Branger, D., & Ellison, D. W. (2021). The 2021 WHO classification of tumors of the Central Nervous System: A summary. Neuro Oncol, 23(8), 1231–1251. https://doi.org/10.1093/neuonc/noab106 .
[DOI: 10.1093/neuonc/noab106]
Lv, H., Wang, Z., Tong, E., Williams, L. M., Zaharchuk, G., Zeineh, M., & Wintermark, M. (2018). Resting-state functional MRI: Everything that nonexperts have always wanted to know. Ajnr. American Journal of Neuroradiology, 39(8), 1390–1399. https://doi.org/10.3174/ajnr.A5527 .
[DOI: 10.3174/ajnr.A5527]
Madhavan, R., Joel, S. E., Mullick, R., Cogsil, T., Niogi, S. N., Tsiouris, A. J., & Shetty, T. (2019). Longitudinal resting State Functional Connectivity predicts clinical outcome in mild traumatic Brain Injury [Article]. Journal of Neurotrauma, 36(5), 650–660. https://doi.org/10.1089/neu.2018.5739 .
[DOI: 10.1089/neu.2018.5739]
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A, 97(8), 4398–4403. https://doi.org/10.1073/pnas.070039597 .
[DOI: 10.1073/pnas.070039597]
Osawa, T., Tosaka, M., Nagaishi, M., & Yoshimoto, Y. (2013). Factors affecting peritumoral brain edema in meningioma: Special histological subtypes with prominently extensive edema. Journal of Neuro-Oncology, 111(1), 49–57. https://doi.org/10.1007/s11060-012-0989-y .
[DOI: 10.1007/s11060-012-0989-y]
Ostrom, Q. T., Cioffi, G., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. S. (2021). CBTRUS Statistical Report: Primary brain and other Central Nervous System Tumors diagnosed in the United States in 2014–2018. Neuro Oncol, 23(12 Suppl 2), iii1–iii105. https://doi.org/10.1093/neuonc/noab200 .
[DOI: 10.1093/neuonc/noab200]
Payne, B. R., & Lomber, S. G. (2001). Reconstructing functional systems after lesions of cerebral cortex. Nature Reviews Neuroscience, 2(12), 911–919. https://doi.org/10.1038/35104085 .
[DOI: 10.1038/35104085]
Paz-Alonso, P. M., Bunge, S. A., & Ghetti, S. (2014). Emergence of higher cognitive functions: Reorganization of largescale brain networks during childhood and adolescence. In: Oxford Handbooks Online.
Pollock, A., Baer, G., Pomeroy, V., & Langhorne, P. (2007). Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke. Cochrane Database Systematic Review, (1), Cd001920. https://doi.org/10.1002/14651858.CD001920.pub2 .
Rolls, E. T., Huang, C. C., Lin, C. P., Feng, J., & Joliot, M. (2020). Automated anatomical labelling atlas 3. Neuroimage, 206, 116189. https://doi.org/10.1016/j.neuroimage.2019.116189 .
[DOI: 10.1016/j.neuroimage.2019.116189]
Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Jo, H. J., Martin, A., & Cox, R. W. (2012). Trouble at Rest: How correlation patterns and Group differences become distorted after global Signal regression. Brain Connectivity, 2(1), 25–32. https://doi.org/10.1089/brain.2012.0080 .
[DOI: 10.1089/brain.2012.0080]
Shehadah, A., Chen, J., Pal, A., He, S., Zeitlin, A., Cui, X., & Chopp, M. (2014). Human placenta-derived adherent cell treatment of experimental stroke promotes functional recovery after stroke in young adult and older rats. PLoS One, 9(1), e86621. https://doi.org/10.1371/journal.pone.0086621 .
[DOI: 10.1371/journal.pone.0086621]
Smitha, K. A., Raja, A., Arun, K., Rajesh, K. M., Thomas, P. G., Kapilamoorthy, B., T. R., & Kesavadas, C. (2017). Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. The Neuroradiology Journal, 30(4), 305–317. https://doi.org/10.1177/1971400917697342 .
[DOI: 10.1177/1971400917697342]
Soderqvist, S., Nutley, S. B., Ottersen, J., Grill, K. M., & Klingberg, T. (2012). Computerized training of non-verbal reasoning and working memory in children with intellectual disability. Frontiers in Human Neuroscience, 6, 271. https://doi.org/10.3389/fnhum.2012.00271 .
[DOI: 10.3389/fnhum.2012.00271]
Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping continued Brain Growth and Gray Matter Density reduction in dorsal frontal cortex: Inverse Relationships during Postadolescent Brain Maturation. The Journal of Neuroscience, 21(22), 8819–8829. https://doi.org/10.1523/jneurosci.21-22-08819.2001 .
[DOI: 10.1523/jneurosci.21-22-08819.2001]
Voets, N. L., Hough, M. G., Douaud, G., Matthews, P. M., James, A., Winmill, L., & Smith, S. (2008). Evidence for abnormalities of cortical development in adolescent-onset schizophrenia. Neuroimage, 43(4), 665–675. https://doi.org/10.1016/j.neuroimage.2008.08.013 .
[DOI: 10.1016/j.neuroimage.2008.08.013]
Whitwell, J. L. (2009). Voxel-based morphometry: An automated technique for assessing structural changes in the brain. Journal of Neuroscience, 29(31), 9661–9664. https://doi.org/10.1523/JNEUROSCI.2160-09.2009 .
[DOI: 10.1523/JNEUROSCI.2160-09.2009]
Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910. https://doi.org/10.1371/journal.pone.0068910 .
[DOI: 10.1371/journal.pone.0068910]
Xu, J., Elazab, A., Liang, J., Jia, F., Zheng, H., Wang, W., & Hu, Q. (2017). Cortical and subcortical structural plasticity Associated with the glioma volumes in patients with cerebral gliomas revealed by surface-based morphometry. Frontiers in Neurology, 8, 266. https://doi.org/10.3389/fneur.2017.00266 .
[DOI: 10.3389/fneur.2017.00266]
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging Neuroinformatics, 14(3), 339–351. https://doi.org/10.1007/s12021-016-9299-4 .
Ying, J., Yuan, T., Jin, L., Li, C., Gui, S., Wang, R., & Zhang, Y. (2020). Brain morphometric and functional magnetic resonance imaging study on patients with visual field defects resulting from Suprasellar Tumors: Preoperative and Postoperative Assessment. World Neurosurg, 134, e353–e359. https://doi.org/10.1016/j.wneu.2019.10.060 .
[DOI: 10.1016/j.wneu.2019.10.060]
Zeiler, S. R., Hubbard, R., Gibson, E. M., Zheng, T., Ng, K., O’Brien, R., & Krakauer, J. W. (2016). Paradoxical Motor Recovery from a first stroke after induction of a second stroke: Reopening a postischemic sensitive period. Neurorehabil Neural Repair, 30(8), 794–800. https://doi.org/10.1177/1545968315624783 .
[DOI: 10.1177/1545968315624783]
Zhao, T., Liao, X., Fonov, V. S., Wang, Q., Men, W., Wang, Y., & He, Y. (2019). Unbiased age-specific structural brain atlases for chinese pediatric population. Neuroimage, 189, 55–70. https://doi.org/10.1016/j.neuroimage.2019.01.006 .
[DOI: 10.1016/j.neuroimage.2019.01.006]
Grants
81870834/National Natural Science Foundation of China
XTYB201817/Special project of peadiatrics of collaborative development centre of Beijing hospital administration