Virome analysis of New Zealand's bats reveals cross-species viral transmission among the .

Stephanie J Waller, Pablo Tortosa, Tertia Thurley, Colin F J O'Donnell, Rebecca Jackson, Gillian Dennis, Rebecca M Grimwood, Edward C Holmes, Kate McInnes, Jemma L Geoghegan
Author Information
  1. Stephanie J Waller: Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand.
  2. Pablo Tortosa: UMR PIMIT Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, CNRS 9192, INSERM 1187, IRD 249, Plateforme de recherche CYROI, 2 rue Maxime Rivière, Ste Clotilde 97490, France.
  3. Tertia Thurley: Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand.
  4. Colin F J O'Donnell: Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand.
  5. Rebecca Jackson: Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand.
  6. Gillian Dennis: Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand.
  7. Rebecca M Grimwood: Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand.
  8. Kate McInnes: Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand.
  9. Jemma L Geoghegan: Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand. ORCID

Abstract

The lesser short-tailed bat () and the long-tailed bat () are Aotearoa New Zealand's only native extant terrestrial mammals and are believed to have migrated from Australia. Long-tailed bats arrived in New Zealand an estimated two million years ago and are closely related to other Australian bat species. Lesser short-tailed bats, in contrast, are the only extant species within the Mystacinidae and are estimated to have been living in isolation in New Zealand for the past 16-18 million years. Throughout this period of isolation, lesser short-tailed bats have become one of the most terrestrial bats in the world. Through a metatranscriptomic analysis of guano samples from eight locations across New Zealand, we aimed to characterise the viromes of New Zealand's bats and determine whether viruses have jumped between these species over the past two million years. High viral richness was observed among long-tailed bats with viruses spanning seven different viral families. In contrast, no bat-specific viruses were identified in lesser short-tailed bats. Both bat species harboured an abundance of likely dietary- and environment-associated viruses. We also identified alphacoronaviruses in long-tailed bat guano that had previously been identified in lesser short-tailed bats, suggesting that these viruses had jumped the species barrier after long-tailed bats migrated to New Zealand. Of note, an alphacoronavirus species discovered here possessed a complete genome of only 22,416 nucleotides with entire deletions or truncations of several non-structural proteins, thereby representing what may be the shortest genome within the identified to date. Overall, this study has revealed a diverse range of novel viruses harboured by New Zealand's only native terrestrial mammals, in turn expanding our understanding of bat viral dynamics and evolution globally.

Keywords

References

  1. Comp Biochem Physiol A Mol Integr Physiol. 2018 Sep;223:18-22 [PMID: 29746908]
  2. Virus Evol. 2018 Mar 30;4(1):vey008 [PMID: 29644096]
  3. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  4. PLoS One. 2014 Jan 29;9(1):e87194 [PMID: 24489870]
  5. Front Microbiol. 2021 Sep 28;12:752214 [PMID: 34659188]
  6. Emerg Infect Dis. 2013 Oct;19(10):1697-9 [PMID: 24050621]
  7. Virus Evol. 2022 Dec 26;9(1):veac124 [PMID: 36694816]
  8. Virology. 2022 Oct;575:43-53 [PMID: 36058085]
  9. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  10. Genome Biol Evol. 2014 Jan;6(1):94-104 [PMID: 24391150]
  11. J Virol. 2005 Nov;79(21):13399-411 [PMID: 16227261]
  12. PLoS Pathog. 2015 Feb 13;11(2):e1004664 [PMID: 25679389]
  13. Nat Microbiol. 2022 Aug;7(8):1312-1323 [PMID: 35902778]
  14. Lancet. 2020 Feb 22;395(10224):565-574 [PMID: 32007145]
  15. Viruses. 2021 Feb 06;13(2): [PMID: 33562073]
  16. Emerg Infect Dis. 2014 Apr;20(4):697-700 [PMID: 24656060]
  17. Virus Evol. 2021 Mar 30;7(1):veab030 [PMID: 34026271]
  18. Nat Protoc. 2015 Jun;10(6):845-58 [PMID: 25950237]
  19. Nat Commun. 2023 Jul 10;14(1):4079 [PMID: 37429936]
  20. Virus Evol. 2021 Feb 04;7(1):veab005 [PMID: 33623709]
  21. Curr Opin Virol. 2022 Feb;52:192-202 [PMID: 34954661]
  22. Arch Virol. 2015 Feb;160(2):565-8 [PMID: 25488292]
  23. Proc Biol Sci. 2015 Jan 7;282(1798):20142124 [PMID: 25392474]
  24. Virus Evol. 2017 Aug 23;3(2):vex022 [PMID: 28948041]
  25. Viruses. 2019 Dec 13;11(12): [PMID: 31847282]
  26. J Virol. 2017 Aug 10;91(17): [PMID: 28637760]
  27. J Gen Virol. 2017 Jan;98(1):2-3 [PMID: 28218572]
  28. Viruses. 2020 Jun 04;12(6): [PMID: 32512909]
  29. Trends Genet. 2000 Jun;16(6):276-7 [PMID: 10827456]
  30. Nature. 2005 Dec 1;438(7068):575-6 [PMID: 16319873]
  31. Nat Rev Microbiol. 2020 Aug;18(8):461-471 [PMID: 32528128]
  32. Clin Microbiol Infect. 2019 Oct;25(10):1277-1285 [PMID: 31059795]
  33. J Vet Med Sci. 2016 Mar;78(3):443-5 [PMID: 26498534]
  34. Curr Top Microbiol Immunol. 2007;315:325-44 [PMID: 17848070]
  35. Viruses. 2019 Feb 23;11(2): [PMID: 30813403]
  36. ISME J. 2016 Mar;10(3):609-20 [PMID: 26262818]
  37. Viruses. 2021 Jan 05;13(1): [PMID: 33466539]
  38. Virology. 2021 Nov;563:20-27 [PMID: 34411808]
  39. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  40. PLoS One. 2013 Aug 20;8(8):e71595 [PMID: 23977082]
  41. R Soc Open Sci. 2022 Feb 9;9(2):211600 [PMID: 35154796]
  42. Sci Rep. 2018 Jan 10;8(1):235 [PMID: 29321543]
  43. Front Microbiol. 2022 Feb 18;13:780651 [PMID: 35250920]
  44. Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):29190-29201 [PMID: 33139552]
  45. Bioinformatics. 2015 Nov 15;31(22):3718-20 [PMID: 26209431]
  46. Nat Rev Microbiol. 2019 Mar;17(3):181-192 [PMID: 30531947]
  47. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  48. J Gen Virol. 2015 Aug;96(8):2442-2452 [PMID: 25900137]
  49. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  50. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  51. Emerg Microbes Infect. 2018 Mar 7;7(1):20 [PMID: 29511159]
  52. Infect Genet Evol. 2018 Jan;57:36-45 [PMID: 29128516]
  53. Microbiome. 2022 Apr 12;10(1):60 [PMID: 35413940]
  54. Curr Opin Virol. 2021 Aug;49:68-80 [PMID: 34052731]
  55. J Appl Microbiol. 2003;94 Suppl:59S-69S [PMID: 12675937]
  56. Nature. 2016 Dec 22;540(7634):539-543 [PMID: 27880757]
  57. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  58. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  59. Mol Ecol Resour. 2021 Aug;21(6):1788-1807 [PMID: 33713395]
  60. Sci Rep. 2019 Apr 11;9(1):5954 [PMID: 30976080]
  61. Curr Opin Virol. 2019 Feb;34:79-89 [PMID: 30665189]
  62. Viruses. 2022 Jun 23;14(7): [PMID: 35891346]
  63. PLoS One. 2015 Jun 17;10(6):e0128871 [PMID: 26083758]
  64. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  65. Microorganisms. 2020 Nov 26;8(12): [PMID: 33256173]
  66. Zoonoses Public Health. 2013 Feb;60(1):22-34 [PMID: 22963584]
  67. iScience. 2023 Jan 20;26(1):105887 [PMID: 36590901]
  68. J Gen Virol. 2013 Nov;94(Pt 11):2393-2398 [PMID: 23939976]
  69. Arch Virol. 2020 Dec;165(12):2993-2997 [PMID: 32975676]
  70. Sci Rep. 2021 Aug 20;11(1):16994 [PMID: 34417469]
  71. Science. 2005 Oct 28;310(5748):676-9 [PMID: 16195424]
  72. Antiviral Res. 2018 Jan;149:58-74 [PMID: 29128390]

Word Cloud

Created with Highcharts 10.0.0batsbatNewshort-tailedspeciesviruseslesserlong-tailedviralZealand'sZealandidentifiedterrestrialmillionyearsnativeextantmammalsmigratedestimatedtwocontrastwithinisolationpastanalysisguanojumpedamongharbouredgenomeevolutionvirusAotearoabelievedAustraliaLong-tailedarrivedagocloselyrelatedAustralianLesserMystacinidaeliving16-18ThroughoutperiodbecomeoneworldmetatranscriptomicsampleseightlocationsacrossaimedcharacteriseviromesdeterminewhetherHighrichnessobservedspanningsevendifferentfamiliesbat-specificabundancelikelydietary-environment-associatedalsoalphacoronavirusespreviouslysuggestingbarriernotealphacoronavirusdiscoveredpossessedcomplete22416nucleotidesentiredeletionstruncationsseveralnon-structuralproteinstherebyrepresentingmayshortestdateOverallstudyrevealeddiverserangenovelturnexpandingunderstandingdynamicsgloballyViromerevealscross-speciestransmissioncoronaviruscodivergencemetatranscriptomicshost-jumpingvirome

Similar Articles

Cited By