Genetic manipulation of an cell line.

Nisha Singh, Agustin Rolandelli, Anya J O'Neal, L Rainer Butler, Sourabh Samaddar, Hanna J Laukaitis-Yousey, Matthew Butnaru, Stephanie E Mohr, Norbert Perrimon, Joao H F Pedra
Author Information
  1. Nisha Singh: Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
  2. Agustin Rolandelli: Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
  3. Anya J O'Neal: Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
  4. L Rainer Butler: Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
  5. Sourabh Samaddar: Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA. ORCID
  6. Hanna J Laukaitis-Yousey: Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA. ORCID
  7. Matthew Butnaru: Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.
  8. Stephanie E Mohr: Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.
  9. Norbert Perrimon: Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.
  10. Joao H F Pedra: Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA. ORCID

Abstract

Although genetic manipulation is one of the hallmarks of model organisms, its applicability to non-model species has remained difficult due to our limited understanding of their fundamental biology. For instance, manipulation of a cell line originated from the black-legged tick an arthropod that serves as a vector for several human pathogens, has yet to be established. Here, we demonstrate the successful genetic modification of the commonly used tick ISE6 line through ectopic expression and clustered regularly interspaced palindromic repeats [(CRISPR)/CRISPR-associated protein 9 (Cas9)] genome editing. We performed ectopic expression using nucleofection and attained CRISPR-Cas9 editing via homology-dependent recombination. Targeting the E3 ubiquitin ligase x-linked inhibitor of apoptosis () and its substrate led to an alteration in molecular signaling within the immune deficiency network and increased infection of the rickettsial agent in ISE6 cells. Collectively, our findings complement techniques for the genetic engineering of ticks which currently limit efficient and scalable molecular genetic screens .IMPORTANCEGenetic engineering in arachnids has lagged compared to insects, largely because of substantial differences in their biology. This study unveils the implementation of ectopic expression and CRISPR-Cas9 gene editing in a tick cell line. We introduced fluorescently tagged proteins in ISE6 cells and edited its genome via homology-dependent recombination. We ablated the expression of and , two signaling molecules present in the immune deficiency (IMD) pathway of . Impairment of the tick IMD pathway, an analogous network of the tumor necrosis factor receptor in mammals, led to enhanced infection of the rickettsial agent . Altogether, our findings provide a critical technical resource to the scientific community to enable a deeper understanding of biological circuits in the black-legged tick .

Keywords

References

  1. Hum Mol Genet. 2014 Sep 15;23(R1):R40-6 [PMID: 24651067]
  2. Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2208673120 [PMID: 37155900]
  3. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9465-9 [PMID: 7568155]
  4. Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):205-210 [PMID: 30559180]
  5. Trends Parasitol. 2007 Sep;23(9):427-33 [PMID: 17656154]
  6. Nat Commun. 2018 Aug 1;9(1):3008 [PMID: 30068905]
  7. Cell. 2014 Oct 23;159(3):647-61 [PMID: 25307932]
  8. Insect Biochem Mol Biol. 2008 Oct;38(10):963-8 [PMID: 18722527]
  9. Expert Rev Clin Immunol. 2020 Jul;16(7):667-677 [PMID: 32571129]
  10. Mol Cell Biol. 1995 Apr;15(4):2037-50 [PMID: 7891699]
  11. Dev Comp Immunol. 2014 Jan;42(1):25-35 [PMID: 23721820]
  12. Sci Transl Med. 2021 Nov 17;13(620):eabj9827 [PMID: 34788080]
  13. Trends Parasitol. 2018 Apr;34(4):295-309 [PMID: 29336985]
  14. Nat Genet. 2023 Feb;55(2):301-311 [PMID: 36658436]
  15. Emerg Infect Dis. 2020 Apr;26(4):641-647 [PMID: 32186484]
  16. Annu Rev Biophys. 2017 May 22;46:505-529 [PMID: 28375731]
  17. Front Physiol. 2020 Feb 25;11:152 [PMID: 32158404]
  18. Nat Commun. 2017 Feb 14;8:14401 [PMID: 28195158]
  19. F1000Res. 2018 Mar 8;7:297 [PMID: 29707202]
  20. Pathog Dis. 2021 Apr 22;79(5): [PMID: 33792663]
  21. Blood. 2005 Aug 1;106(3):787-94 [PMID: 15827131]
  22. Cell. 2013 Jul 18;154(2):442-51 [PMID: 23849981]
  23. iScience. 2022 Feb 15;25(3):103781 [PMID: 35535206]

Grants

  1. F31 AI152215/NIAID NIH HHS
  2. T32 AI162579/NIAID NIH HHS
  3. P01 AI138949/NIAID NIH HHS
  4. F31 AI167471/NIAID NIH HHS
  5. R21 AI168592/NIAID NIH HHS
  6. R21 AI165520/NIAID NIH HHS
  7. R01 AI116523/NIAID NIH HHS
  8. R01 AI134696/NIAID NIH HHS

MeSH Term

Animals
Humans
Ixodes
Borrelia burgdorferi
Anaplasma phagocytophilum
Rickettsia
Cell Line
Mammals

Word Cloud

Created with Highcharts 10.0.0tickgeneticlineexpressionmanipulationcellISE6ectopiceditingunderstandingbiologyblack-leggedgenomeCRISPR-Cas9viahomology-dependentrecombinationledmolecularsignalingimmunedeficiencynetworkinfectionrickettsialagentcellsfindingsengineeringticksIMDpathwayAlthoughonehallmarksmodelorganismsapplicabilitynon-modelspeciesremaineddifficultduelimitedfundamentalinstanceoriginatedarthropodservesvectorseveralhumanpathogensyetestablisheddemonstratesuccessfulmodificationcommonlyusedclusteredregularlyinterspacedpalindromicrepeats[CRISPR/CRISPR-associatedprotein9Cas9]performedusingnucleofectionattainedTargetingE3ubiquitinligasex-linkedinhibitorapoptosissubstratealterationwithinincreasedCollectivelycomplementtechniquescurrentlylimitefficientscalablescreensIMPORTANCEGeneticarachnidslaggedcomparedinsectslargelysubstantialdifferencesstudyunveilsimplementationgeneintroducedfluorescentlytaggedproteinseditedablatedtwomoleculespresentImpairmentanalogoustumornecrosisfactorreceptormammalsenhancedAltogetherprovidecriticaltechnicalresourcescientificcommunityenabledeeperbiologicalcircuitsGeneticBorreliaburgdorferiLymediseaserickettsiatick-bornediseases

Similar Articles

Cited By