PDOL-Based Solid Electrolyte Toward Practical Application: Opportunities and Challenges.

Hua Yang, Maoxiang Jing, Li Wang, Hong Xu, Xiaohong Yan, Xiangming He
Author Information
  1. Hua Yang: Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
  2. Maoxiang Jing: Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China. mxjing2004@ujs.edu.cn.
  3. Li Wang: Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China. wang-l@tsinghua.edu.cn.
  4. Hong Xu: Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
  5. Xiaohong Yan: Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
  6. Xiangming He: Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China. hexm@tsinghua.edu.cn.

Abstract

Polymer solid-state lithium batteries (SSLB) are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety. Ion conductivity, interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB. As the main component of SSLB, poly(1,3-dioxolane) (PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid electrolyte, for their high ion conductivity at room temperature, good battery electrochemical performances, and simple assembly process. This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB. The focuses include exploring the polymerization mechanism of DOL, the performance of PDOL composite electrolytes, and the application of PDOL. Furthermore, we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB. The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.

Keywords

References

  1. Angew Chem Int Ed Engl. 2022 Feb 1;61(6):e202114805 [PMID: 34846084]
  2. Angew Chem Int Ed Engl. 2022 Jul 18;61(29):e202204776 [PMID: 35575049]
  3. J Am Chem Soc. 2021 May 5;143(17):6542-6550 [PMID: 33904722]
  4. Nanomicro Lett. 2022 Sep 19;14(1):191 [PMID: 36121521]
  5. Adv Mater. 2020 Mar;32(12):e1905629 [PMID: 32053238]
  6. Adv Sci (Weinh). 2022 Feb;9(4):e2103663 [PMID: 34894106]
  7. ACS Appl Mater Interfaces. 2022 Jun 22;14(24):27873-27881 [PMID: 35671243]
  8. Nano Lett. 2021 May 26;21(10):4447-4453 [PMID: 33973796]
  9. J Colloid Interface Sci. 2023 Aug 15;644:53-63 [PMID: 37094472]
  10. Adv Mater. 2021 Apr;33(13):e2006247 [PMID: 33630383]
  11. Chem Commun (Camb). 2022 Sep 29;58(78):10973-10976 [PMID: 36093782]
  12. Phys Chem Chem Phys. 2011 Nov 21;13(43):19378-92 [PMID: 21986676]
  13. Nano Lett. 2018 Oct 10;18(10):6113-6120 [PMID: 30169958]
  14. Angew Chem Int Ed Engl. 2021 Aug 9;60(33):18335-18343 [PMID: 34157197]
  15. Adv Mater. 2023 Jan;35(3):e2208340 [PMID: 36305016]
  16. Nano Lett. 2019 May 8;19(5):3066-3073 [PMID: 30951633]
  17. ACS Appl Mater Interfaces. 2009 Aug;1(8):1650-5 [PMID: 20355779]
  18. Nano Lett. 2020 Dec 9;20(12):8832-8840 [PMID: 33237783]
  19. Adv Sci (Weinh). 2020 Nov 03;7(23):2003370 [PMID: 33304769]
  20. Nano Lett. 2016 Jan 13;16(1):459-65 [PMID: 26595277]
  21. Small Methods. 2023 Sep;7(9):e2300228 [PMID: 37150838]
  22. J Colloid Interface Sci. 2022 Aug 15;620:199-208 [PMID: 35428002]
  23. Nano Converg. 2021 Jan 10;8(1):2 [PMID: 33426600]
  24. ACS Appl Mater Interfaces. 2021 Jul 14;13(27):32486-32494 [PMID: 34227378]
  25. ACS Appl Mater Interfaces. 2021 Oct 20;13(41):48810-48817 [PMID: 34617731]
  26. J Am Chem Soc. 2021 Apr 21;143(15):5717-5726 [PMID: 33843219]
  27. Nanomicro Lett. 2023 Jan 31;15(1):42 [PMID: 36719552]
  28. Chem Commun (Camb). 2021 Aug 10;57(64):7934-7937 [PMID: 34286740]
  29. J Am Chem Soc. 2013 Jan 30;135(4):1167-76 [PMID: 23294028]
  30. ACS Nano. 2016 Dec 27;10(12):11407-11413 [PMID: 28024352]
  31. Angew Chem Int Ed Engl. 2021 Nov 8;60(46):24668-24675 [PMID: 34498788]
  32. J Am Chem Soc. 2021 Nov 3;143(43):18188-18195 [PMID: 34677957]
  33. Adv Sci (Weinh). 2021 Mar 03;8(9):2003887 [PMID: 33977057]
  34. Angew Chem Int Ed Engl. 2022 Aug 1;61(31):e202205075 [PMID: 35611865]
  35. Nature. 2021 May;593(7858):218-222 [PMID: 33981053]
  36. Nat Commun. 2023 Oct 9;14(1):6296 [PMID: 37813846]
  37. Adv Mater. 2020 Jun;32(23):e2000302 [PMID: 32363631]
  38. Angew Chem Int Ed Engl. 2020 Dec 1;59(49):22194-22201 [PMID: 32841474]
  39. Angew Chem Int Ed Engl. 2023 Mar 13;62(12):e202218621 [PMID: 36658098]
  40. ACS Appl Mater Interfaces. 2022 Jul 13;14(27):30786-30795 [PMID: 35776855]
  41. ACS Appl Mater Interfaces. 2017 Oct 4;9(39):33913-33924 [PMID: 28892608]
  42. Sci Adv. 2018 Oct 05;4(10):eaat5383 [PMID: 30310867]
  43. Science. 2022 Feb 18;375(6582):739-745 [PMID: 35175797]
  44. Nat Commun. 2021 Jul 26;12(1):4519 [PMID: 34312377]
  45. Nano Lett. 2021 Jul 28;21(14):6163-6170 [PMID: 34259523]
  46. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):7094-9 [PMID: 27307440]
  47. Macromol Rapid Commun. 2020 May;41(9):e2000047 [PMID: 32249484]
  48. Chem Rev. 2020 May 13;120(9):4169-4221 [PMID: 32267697]
  49. Adv Mater. 2021 Apr;33(14):e2008133 [PMID: 33656208]
  50. Adv Mater. 2019 Mar;31(11):e1806082 [PMID: 30680811]
  51. Adv Mater. 2022 Aug;34(32):e2110333 [PMID: 35765212]

Word Cloud

Created with Highcharts 10.0.0SSLBPDOLelectrolyteselectrolyteapplicationpolymersolid-statebatteriespromisingenergyhighconductivitybatteryassemblyprocessmainchallengescommercialization13-dioxolanesolidtowardpracticalmechanismresearchPDOL-basedSolidPracticalPolymerlithiumregardedstoragetechnologymeetgrowingdemandduedensitysafetyIoninterfacestabilitystillhurdlecomponentpoly-basedpolymerizedin-situbecomingcandidateionroomtemperaturegoodelectrochemicalperformancessimplereviewanalyzesopportunitiesfocusesincludeexploringpolymerizationDOLperformancecompositeFurthermoreprovideperspectivefuturedirectionsneedemphasizedexplorationschemesfacilitatescomprehensiveprofoundunderstandingprovidesnewideasboostPDOL-BasedElectrolyteTowardApplication:OpportunitiesChallengesCompositePolyPolymerization

Similar Articles

Cited By