Emerging therapeutic targets in systemic sclerosis.

Steven O'Reilly
Author Information
  1. Steven O'Reilly: Department of Biosciences, Durham University, South Road, Durham, UK. stevenoreilly@hotmail.com. ORCID

Abstract

Systemic sclerosis is an autoimmune connective tissue disease which is characterised by vascular perturbations, inflammation, and fibrosis. Although huge progress recently into the underlying molecular pathways that are perturbed in the disease, currently no therapy exists that targets the fibrosis element of the disease and consequently there is a huge unmet medical need. Emerging studies reveal new dimensions of complexity, and multiple aberrant pathways have been uncovered that have shed light on disturbed signalling in the disease, primarily in inflammatory pathways that can be targeted with repurposed drugs. Pre-clinical animal models using these inhibitors have yielded proof of concept for targeting these signalling systems and progressing to clinical trials. This review will examine the recent evidence of new perturbed pathways in SSc and how these can be targeted with new or repurposed drugs to target a currently intractable disease.

Keywords

References

  1. Allanore Y et al (2015) Systemic sclerosis Nature Reviews Disease Primers 1(1):15002 [PMID: 27189141]
  2. Denton CP, Khanna D (2017) Systemic sclerosis. The Lancet 390(10103):1685–1699 [DOI: 10.1016/S0140-6736(17)30933-9]
  3. Hughes M et al (2020) Raynaud phenomenon and digital ulcers in systemic sclerosis. Nat Rev Rheumatol 16(4):208–221 [PMID: 32099191]
  4. Asano Y, Varga J (2020) Rationally-based therapeutic disease modification in systemic sclerosis: novel strategies. Semin Cell Dev Biol 101:146–160 [PMID: 31859147]
  5. Distler O et al (2019) Nintedanib for systemic sclerosis-associated interstitial lung disease. N Engl J Med 380(26):2518–2528 [PMID: 31112379]
  6. van Laar JM et al (2014) Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 311(24):2490–2498 [PMID: 25058083]
  7. Roumm AD et al (1984) Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum 27(6):645–653 [PMID: 6375682]
  8. Hügle T et al (2013) Tumor necrosis factor–costimulated T lymphocytes from patients with systemic sclerosis trigger collagen production in fibroblasts. Arthritis Rheum 65(2):481–491 [PMID: 23045159]
  9. Ishikawa O, Ishikawa H (1992) Macrophage infiltration in the skin of patients with systemic sclerosis. J Rheumatol 19(8):1202–1206 [PMID: 1404154]
  10. Higashi-Kuwata N et al (2010) Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res Ther 12(4):R128 [PMID: 20602758]
  11. Ciechomska M et al (2016) Histone demethylation and Toll-like receptor 8-dependent cross-talk in monocytes promotes transdifferentiation of fibroblasts in systemic sclerosis via Fra-2. Arthritis Rheumatol 68(6):1493–1504 [PMID: 26814616]
  12. Skaug B et al (2020) Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann Rheum Dis 79(3):379–386 [PMID: 31767698]
  13. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13 [PMID: 24669294]
  14. Bhandari R et al (2020) Profibrotic activation of human macrophages in systemic sclerosis. Arthritis & Rheumatology 72(7):1160–1169 [DOI: 10.1002/art.41243]
  15. Ototake Y et al (2021) Downregulated IRF8 in monocytes and macrophages of patients with systemic sclerosis may aggravate the fibrotic phenotype. J Invest Dermatol 141(8):1954–1963 [PMID: 33705797]
  16. Trombetta AC et al (2018) A circulating cell population showing both M1 and M2 monocyte/macrophage surface markers characterizes systemic sclerosis patients with lung involvement. Respir Res 19(1):186 [PMID: 30249259]
  17. Maier C et al (2017) Inhibition of phosphodiesterase 4 (PDE4) reduces dermal fibrosis by interfering with the release of interleukin-6 from M2 macrophages. Ann Rheum Dis 76(6):1133–1141 [PMID: 28209630]
  18. Brown M, O’Reilly S (2018) Innate immunity and Toll-like receptor signaling in the pathogenesis of scleroderma: advances and opportunities for therapy. Curr Opin Rheumatol 30(6):600–605 [PMID: 30234721]
  19. Ciechomska M et al (2013) Toll-like receptor-mediated, enhanced production of profibrotic TIMP-1 in monocytes from patients with systemic sclerosis: role of serum factors. Ann Rheum Dis 72(8):1382 [PMID: 23223421]
  20. Fullard N, O’Reilly S (2015) Role of innate immune system in systemic sclerosis. Seminars in Immunopathology 37(5):511–517 [PMID: 26159672]
  21. Bhattacharyya S et al (2016) Tenascin-C drives persistence of organ fibrosis. Nat Commun 7:11703 [PMID: 27256716]
  22. Lakota K et al (2015) Serum amyloid A is a marker for pulmonary involvement in systemic sclerosis. PLoS ONE 10(1):e0110820 [PMID: 25629975]
  23. Bhattacharyya S et al (2014) Fibronectin promotes chronic cutaneous fibrosis through Toll-like receptor signaling. Sci Transl Med 6(232):232ra50 [PMID: 24739758]
  24. Morand EF et al (2020) Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med 382(3):211–221 [PMID: 31851795]
  25. Rudnik M et al (2021) Regulation of monocyte adhesion and type i interferon signaling by CD52 in patients with systemic sclerosis. Arthritis Rheumatol 73(9):1720–1730 [PMID: 33760395]
  26. Mariotti B et al (2019) The long non-coding RNA NRIR drives IFN-response in monocytes: implication for systemic sclerosis. Front Immunol 10:100 [PMID: 30804934]
  27. O’Reilly S, Hügle T, van Laar JM (2012) T cells in systemic sclerosis: a reappraisal. Rheumatology 51(9):1540–1549 [PMID: 22577083]
  28. McGeachy MJ, Cua DJ, Gaffen SL (2019) The IL-17 family of cytokines in health and disease. Immunity 50(4):892–906 [PMID: 30995505]
  29. Krasimirova E et al (2017) Treg/Th17 cell balance and phytohaemagglutinin activation of T lymphocytes in peripheral blood of systemic sclerosis patients. World J Exp Med 7(3):84–96 [PMID: 28890870]
  30. Nakashima T et al (2012) Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J Immunol 188(8):3573–3583 [PMID: 22403442]
  31. Hasegawa M et al (1997) Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J Rheumatol 24(2):328–332 [PMID: 9034992]
  32. Fuschiotti P et al (2013) Interleukin-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis Rheum 65(1):236–246 [PMID: 23001877]
  33. Maehara T et al (2020) Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. J Clin Invest 130(5):2451–2464 [PMID: 31990684]
  34. Padila CM et al (2023) Increased CD8+ tissue resident memory T cells, regulatory T cells, and activated natural killer cells in systemic sclerosis lungs. Rheumatology 13:kead273
  35. Allanore Y et al (2020) A randomised, double-blind, placebo-controlled, 24-week, phase II, proof-of-concept study of romilkimab (SAR156597) in early diffuse cutaneous systemic sclerosis. Ann Rheum Dis 79(12):1600–1607 [PMID: 32963047]
  36. Blair HA, Deeks ED (2017) Abatacept: a review in rheumatoid arthritis. Drugs 77(11):1221–1233 [PMID: 28608166]
  37. Chung L et al (2020) Safety and efficacy of abatacept in early diffuse cutaneous systemic sclerosis (ASSET): open-label extension of a phase 2, double-blind randomised trial. Lancet Rheumatol 2(12):e743–e753 [PMID: 34966900]
  38. Tanaka Y et al (2022) Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol 18(3):133–145 [PMID: 34987201]
  39. Hodge JA et al (2016) The mechanism of action of tofacitinib - an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol 34(2):318–328 [PMID: 26966791]
  40. Banerjee S et al (2017) JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77(5):521–546 [PMID: 28255960]
  41. Wang W et al (2020) The JAK/STAT pathway is activated in systemic sclerosis and is effectively targeted by tofacitinib. J Scleroderma Relat Disord 5(1):40–50 [PMID: 35382402]
  42. O’Reilly S et al (2014) Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J Biol Chem 289(14):9952–9960 [PMID: 24550394]
  43. Khan K et al (2012) Clinical and pathological significance of interleukin 6 overexpression in systemic sclerosis. Ann Rheum Dis 71(7):1235 [PMID: 22586157]
  44. Chakraborty D et al (2017) Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat Commun 8(1):1130 [PMID: 29066712]
  45. Tang JC et al (2023) Successful treatment of paediatric morphea with tofacitinib. Acta Derm Venereol 103:adv4805 [PMID: 37083093]
  46. You H et al (2021) Tofacitinib as a possible treatment for skin thickening in diffuse cutaneous systemic sclerosis. Rheumatology (Oxford) 60(5):2472–2477 [PMID: 33188425]
  47. Karalilova RV et al (2021) Tofacitinib in the treatment of skin and musculoskeletal involvement in patients with systemic sclerosis, evaluated by ultrasound. Rheumatol Int 41(10):1743–1753 [PMID: 34313812]
  48. Khanna D et al (2022) Tofacitinib blocks IFN-regulated biomarker genes in skin fibroblasts and keratinocytes in a systemic sclerosis trial. JCI Insight 7(17):e159566.
  49. O'Reilly S (2023) Senescence in diffuse systemic sclerosis is elevated and may play a role in fibrosis. Clin Exp Immunol uxad077
  50. Bellamri N et al (2023) Effects of ruxolitinib on fibrosis in preclinical models of systemic sclerosis. Int Immunopharmacol 116:109723 [PMID: 36696855]
  51. Zhang Y et al (2017) JAK1-dependent transphosphorylation of JAK2 limits the antifibrotic effects of selective JAK2 inhibitors on long-term treatment. Ann Rheum Dis 76(8):1467–1475 [PMID: 28478401]
  52. Lescoat A et al (2020) Combined anti-fibrotic and anti-inflammatory properties of JAK-inhibitors on macrophages in vitro and in vivo: perspectives for scleroderma-associated interstitial lung disease. Biochem Pharmacol 178:114103 [PMID: 32562787]
  53. Ricard L et al (2019) Circulating follicular helper T cells are increased in systemic sclerosis and promote plasmablast differentiation through the IL-21 pathway which can be inhibited by ruxolitinib. Ann Rheum Dis 78(4):539–550 [PMID: 30760472]
  54. Liu H et al (2023) Baricitinib improves pulmonary fibrosis in mice with rheumatoid arthritis-associated interstitial lung disease by inhibiting the Jak2/Stat3 signaling pathway. Adv Rheumatol 63(1):45 [PMID: 37641106]
  55. Hou Z et al (2022) JAK1/2 inhibitor baricitinib improves skin fibrosis and digital ulcers in systemic sclerosis. Front Med (Lausanne) 9:859330 [PMID: 35733864]
  56. Aravena O et al (2017) TIM-1 defines a human regulatory B cell population that is altered in frequency and function in systemic sclerosis patients. Arthritis Res Ther 19(1):8 [PMID: 28103916]
  57. Matsushita T et al (2007) BAFF antagonist attenuates the development of skin fibrosis in tight-skin mice. J Invest Dermatol 127(12):2772–2780 [PMID: 17581616]
  58. McLaughlin P et al (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16(8):2825–2833 [PMID: 9704735]
  59. Teng YK et al (2009) Residual inflammation after rituximab treatment is associated with sustained synovial plasma cell infiltration and enhanced B cell repopulation. Ann Rheum Dis 68(6):1011–1016 [PMID: 18647852]
  60. Weiner GJ (2010) Rituximab: mechanism of action. Semin Hematol 47(2):115–123 [PMID: 20350658]
  61. Ebata S et al (2021) Safety and efficacy of rituximab in systemic sclerosis (DESIRES): a double-blind, investigator-initiated, randomised, placebo-controlled trial. The Lancet Rheumatology 3(7):e489–e497 [PMID: 38279402]
  62. Morgan K et al (2023) Rituximab treatment for systemic sclerosis-associated interstitial lung disease: a case series of 13 patients. Intern Med J 53(7):1147–1153 [PMID: 35670218]
  63. Thiebaut M et al (2018) Efficacy and safety of rituximab in systemic sclerosis: French retrospective study and literature review. Autoimmun Rev 17(6):582–587 [PMID: 29635080]
  64. Maher TM et al (2023) Rituximab versus intravenous cyclophosphamide in patients with connective tissue disease-associated interstitial lung disease in the UK (RECITAL): a double-blind, double-dummy, randomised, controlled, phase 2b trial. Lancet Respir Med 11(1):45–54 [PMID: 36375479]
  65. Reddy V et al (2017) Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. Rheumatology (Oxford) 56(7):1227–1237 [PMID: 28407142]
  66. Furie RA et al (2022) B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 81(1):100–107 [PMID: 34615636]
  67. Simon D et al (2021) Increased frequency of activated switched memory B cells and its association with the presence of pulmonary fibrosis in diffuse cutaneous systemic sclerosis patients. Front Immunol 12:686483 [PMID: 34276673]
  68. Matsushita T et al (2015) Decreased levels of regulatory B cells in patients with systemic sclerosis: association with autoantibody production and disease activity. Rheumatology 55(2):263–267 [PMID: 26350483]
  69. Jin X et al (2021) Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell Mol Immunol 18(8):1896–1903 [PMID: 32472023]
  70. Mackensen A et al (2022) Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med 28(10):2124–2132 [PMID: 36109639]
  71. Bergmann C et al (2023) Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann Rheum Dis. England, pp 1117–1120
  72. Brudno JN, Kochenderfer JN (2016) Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127(26):3321–3330 [PMID: 27207799]
  73. Ghofrani HA et al (2013) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369(4):330–340 [PMID: 23883378]
  74. Yang W et al (2021) Single-cell transcriptomic analysis reveals a hepatic stellate cell-activation roadmap and myofibroblast origin during liver fibrosis in mice. Hepatology 74(5):2774–2790 [PMID: 34089528]
  75. Dees C et al (2015) Stimulators of soluble guanylate cyclase (sGC) inhibit experimental skin fibrosis of different aetiologies. Ann Rheum Dis 74(8):1621–1625 [PMID: 25817717]
  76. Khanna D et al (2020) Riociguat in patients with early diffuse cutaneous systemic sclerosis (RISE-SSc): randomised, double-blind, placebo-controlled multicentre trial. Ann Rheum Dis 79(5):618–625 [PMID: 32299845]
  77. Heinrich PC et al (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334(2):297–314 [PMID: 9716487]
  78. Schafer S et al (2017) IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552(7683):110–115 [PMID: 29160304]
  79. Dong J et al (2021) Hepatocyte-specific IL11 cis-signaling drives lipotoxicity and underlies the transition from NAFLD to NASH. Nat Commun 12(1):66 [PMID: 33397952]
  80. Lim WW et al (2020) Interleukin-11 is important for vascular smooth muscle phenotypic switching and aortic inflammation, fibrosis and remodeling in mouse models. Sci Rep 10(1):17853 [PMID: 33082445]
  81. Ng B et al (2019) Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci Transl Med 11(511)
  82. Ng B et al (2020) Fibroblast-specific IL11 signaling drives chronic inflammation in murine fibrotic lung disease. Faseb j 34(9):11802–11815 [PMID: 32656894]
  83. Sweeney M et al (2023) Cardiomyocyte-restricted expression of IL11 causes cardiac fibrosis, inflammation, and dysfunction. Int J Mol Sci 24(16)
  84. Adami E et al (2021) IL11 is elevated in systemic sclerosis and IL11-dependent ERK signaling underlies TGFβ-mediated activation of dermal fibroblasts. Rheumatology (Oxford)
  85. Steadman T, O’Reilly S (2023) Elevated interleukin-11 in systemic sclerosis and role in disease pathogenesis. J Dermatol
  86. Steadman T, O’Reilly S (2023) Elevated interleukin-11 in systemic sclerosis and role in disease pathogenesis. J Dermatol 50(10):1255–1261 [PMID: 37291792]
  87. Ye W et al (2023) Blockade of IL-11 trans-signaling or JAK2/STAT3 signaling ameliorates the profibrotic effect of IL-11. Immunol Invest 52(6):703–716 [PMID: 37401665]
  88. Bai X et al (2022) Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci Adv 8(25):eabn7162 [PMID: 35731866]
  89. Bağci IS, Ruzicka T (2018) IL-31: A new key player in dermatology and beyond. J Allergy Clin Immunol 141(3):858–866 [PMID: 29366565]
  90. Bilsborough J et al (2006) IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis. J Allergy Clin Immunol 117(2):418–425 [PMID: 16461143]
  91. Yaseen B et al (2020) Interleukin-31 promotes pathogenic mechanisms underlying skin and lung fibrosis in scleroderma. Rheumatology (Oxford) 59(9):2625–2636 [PMID: 32365362]
  92. Corano Scheri K et al (2022) SARA suppresses myofibroblast precursor transdifferentiation in fibrogenesis in a mouse model of scleroderma. JCI Insight 7(21)
  93. Kabashima K et al (2022) Nemolizumab plus topical agents in patients with atopic dermatitis (AD) and moderate-to-severe pruritus provide improvement in pruritus and signs of AD for up to 68 weeks: results from two phase III, long-term studies. Br J Dermatol 186(4):642–651 [PMID: 34726262]
  94. Lu Y et al (2020) Effects of thalidomide on Th17, Treg cells and TGF-β1/Smad3 pathway in a mouse model of systemic sclerosis. Int J Rheum Dis 23(3):406–419 [PMID: 31840939]
  95. Pan J et al (2023) Therapeutic effects of thalidomide on patients with systemic sclerosis-associated interstitial lung disease. J Scleroderma Relat Disord 8(3):231–240 [PMID: 37744042]
  96. Vivien MH et al (2018) Pomalidomide in patients with interstitial lung disease due to systemic sclerosis: a phase II, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. J Rheumatol 45(3):405 [DOI: 10.3899/jrheum.161040]
  97. Odell ID et al (2022) Epiregulin is a dendritic cell–derived EGFR ligand that maintains skin and lung fibrosis. Sci Immunol 7(78):eabq6691
  98. Wu X et al (2020) Epiregulin (EREG) and myocardin related transcription factor A (MRTF-A) form a feedforward loop to drive hepatic stellate cell activation. Front Cell Dev Biol 8:591246 [PMID: 33520984]
  99. Glück S et al (2017) Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19(9):1061–1070 [PMID: 28759028]
  100. Ryu C et al (2020) Bioactive plasma mitochondrial DNA is associated with disease progression in scleroderma-associated interstitial lung disease. Arthritis Rheumatol 72(11):1905–1915 [PMID: 32602227]
  101. Paul S et al (2022) Centromere defects, chromosome instability, and cGAS-STING activation in systemic sclerosis. Nat Commun 13(1):7074 [PMID: 36400785]
  102. Liu C et al (2023) DNA from macrophages induces fibrosis and vasculopathy through POLR3A/STING/type I interferon axis in systemic sclerosis. Rheumatology (Oxford) 62(2):934–945 [PMID: 35686918]
  103. Pan Y et al (2021) The STING antagonist H-151 ameliorates psoriasis via suppression of STING/NF-κB-mediated inflammation. Br J Pharmacol 178(24):4907–4922 [PMID: 34460100]
  104. Mdkhana B et al (2023) Nucleic acid sensor STING drives remodeling and its inhibition enhances steroid responsiveness in chronic obstructive pulmonary disease. PLoS ONE 18(7):e0284061 [PMID: 37406004]
  105. Pålsson-McDermott EM, O’Neill LAJ (2020) Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 30(4):300–314 [PMID: 32132672]
  106. Henderson J et al (2020) Metabolic reprogramming of glycolysis and glutamine metabolism are key events in myofibroblast transition in systemic sclerosis pathogenesis. J Cell Mol Med
  107. Cantanhede IG et al (2022) Exploring metabolism in scleroderma reveals opportunities for pharmacological intervention for therapy in fibrosis. Front Immunol 13:1004949 [PMID: 36304460]
  108. Linker RA et al (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134(Pt 3):678–692 [PMID: 21354971]
  109. Kornberg MD et al (2018) Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360(6387):449–453 [PMID: 29599194]
  110. Toyama T et al (2018) Therapeutic targeting of tAZ and YAP by dimethyl fumarate in systemic sclerosis fibrosis. J Invest Dermatol 138(1):78–88 [PMID: 28870693]
  111. Kong K et al (2021) A pilot study of dimethyl fumarate in pulmonary arterial hypertension associated with systemic sclerosis. J Scleroderma Relat Disord 6(3):242–246 [PMID: 35005243]
  112. Mills EL et al (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556(7699):113–117 [PMID: 29590092]
  113. Ogger PP et al (2020) Itaconate controls the severity of pulmonary fibrosis. Sci Immunol 5(52):eabc1884 [PMID: 33097591]
  114. Fan K et al (2022) Immune response gene 1 deficiency impairs Nrf2 activation and aggravates liver fibrosis in mice. Biochem Biophys Res Commun 607:103–109 [PMID: 35367821]
  115. Runtsch MC et al (2022) Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab 34(3):487-501.e8 [PMID: 35235776]
  116. Hoyle C et al (2022) Itaconate and fumarate derivatives inhibit priming and activation of the canonical NLRP3 inflammasome in macrophages. Immunology 165(4):460–480 [PMID: 35137954]
  117. Liu C et al (2022) Cathepsin B/NLRP3/GSDMD axis-mediated macrophage pyroptosis induces inflammation and fibrosis in systemic sclerosis. J Dermatol Sci 108(3):127–137 [PMID: 36585288]
  118. You M et al (2023) 4-Octyl itaconate inhibits inflammation to attenuate psoriasis as an agonist of oxeiptosis. Int Immunopharmacol 124(Pt B):110915 [PMID: 37741130]
  119. Bharath LP et al (2020) Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab 32(1):44-55.e6 [PMID: 32402267]
  120. Rangarajan S et al (2018) Metformin reverses established lung fibrosis in a bleomycin model. Nat Med 24(8):1121–1127 [PMID: 29967351]
  121. Su Y et al (2023) Metformin induces mitochondrial fission and reduces energy metabolism by targeting respiratory chain complex I in hepatic stellate cells to reverse liver fibrosis. Int J Biochem Cell Biol 157:106375 [PMID: 36716817]
  122. Cavaglieri RC et al (2015) Metformin prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. Mol Cell Endocrinol 412:116–122 [PMID: 26067231]
  123. Ursini F et al (2016) Oral metformin ameliorates bleomycin-induced skin fibrosis. J Invest Dermatol 136(9):1892–1894 [PMID: 27251791]
  124. Karatas A et al (2022) Tofacitinib and metformin reduce the dermal thickness and fibrosis in mouse model of systemic sclerosis. Sci Rep 12(1):2553 [PMID: 35169250]
  125. Ji H et al (2023) Metformin attenuates fibroblast activation during pulmonary fibrosis by targeting S100A4 via AMPK-STAT3 axis. Front Pharmacol 14:1089812 [PMID: 36817136]
  126. Švec X et al (2023) S100A4 neutralizing monoclonal antibody 6B12 counteracts the established experimental skin fibrosis induced by bleomycin. Rheumatology (Oxford)
  127. Wang Y et al (2019) Metformin attenuates bleomycin-induced scleroderma by regulating the balance of Treg/Teff cells and reducing spleen germinal center formation. Mol Immunol 114:72–80 [PMID: 31344551]
  128. Shi B et al (2021) Targeting CD38-dependent NAD+ metabolism to mitigate multiple organ fibrosis. iScience 24(1):101902
  129. Lonial S et al (2016) Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet 387(10027):1551–1560 [PMID: 26778538]
  130. Mateos MV et al (2020) Subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma (COLUMBA): a multicentre, open-label, non-inferiority, randomised, phase 3 trial. Lancet Haematol 7(5):e370–e380 [PMID: 32213342]
  131. van de Donk N, Usmani SZ (2018) CD38 antibodies in multiple myeloma: mechanisms of action and modes of resistance. Front Immunol 9:2134 [PMID: 30294326]
  132. Shi B et al (2022) Senescent cells accumulate in systemic sclerosis skin. J Invest Dermatol
  133. Tchkonia T et al (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123(3):966–972 [PMID: 23454759]
  134. Velarde MC, Demaria M, Campisi J (2013) Senescent cells and their secretory phenotype as targets for cancer therapy. Interdiscip Top Gerontol 38:17–27 [PMID: 23503512]
  135. Schafer MJ et al (2017) Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 8(1):14532 [PMID: 28230051]
  136. Gniadecki R et al (2022) Genomic instability in early systemic sclerosis. J Autoimmun 131:102847 [PMID: 35803104]
  137. Justice JN et al (2019) Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40:554–563 [PMID: 30616998]
  138. Nguyen XX et al (2021) Lysyl oxidase directly contributes to extracellular matrix production and fibrosis in systemic sclerosis. Am J Physiol Lung Cell Mol Physiol 320(1):L29-l40 [PMID: 33026236]
  139. Vadasz Z et al (2019) Lysyl oxidase-a possible role in systemic sclerosis-associated pulmonary hypertension: a multicentre study. Rheumatology (Oxford) 58(9):1547–1555 [PMID: 30770717]
  140. Calabro NE et al (2019) Thrombospondin-2 regulates extracellular matrix production, LOX levels, and cross-linking via downregulation of miR-29. Matrix Biol 82:71–85 [PMID: 30876926]
  141. Böker K et al (1991) Fibrosis of the liver in rats induced by bile duct ligation. Effects of inhibition by prolyl 4-hydroxylase. J Hepatol 13(3):S35-40 [PMID: 1667667]
  142. Smith-Cortinez N et al (2021) Collagen release by human hepatic stellate cells requires vitamin C and is efficiently blocked by hydroxylase inhibition. Faseb j 35(2):e21219 [PMID: 33236467]
  143. Gjaltema RAF et al (2015) Procollagen lysyl hydroxylase 2 expression is regulated by an alternative downstream transforming growth factor β-1 activation mechanism *. J Biol Chem 290(47):28465–28476 [PMID: 26432637]
  144. Brinckmann J et al (2005) Interleukin 4 and prolonged hypoxia induce a higher gene expression of lysyl hydroxylase 2 and an altered cross-link pattern: important pathogenetic steps in early and late stage of systemic scleroderma? Matrix Biol 24(7):459–468 [PMID: 16139999]
  145. Maghsoud Y et al (2023) Computational investigation of a series of small molecules as potential compounds for lysyl hydroxylase-2 (LH2) inhibition. J Chem Inf Model 63(3):986–1001 [PMID: 36779232]
  146. Werner G et al (2023) Single-cell transcriptome analysis identifies subclusters with inflammatory fibroblast responses in localized scleroderma. Int J Mol Sci  24(12)
  147. Gur C et al (2022) LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell 185(8):1373-1388.e20 [PMID: 35381199]
  148. Lu J et al (2015) Activation of AMPK by metformin inhibits TGF-β-induced collagen production in mouse renal fibroblasts. Life Sci 127:59–65 [PMID: 25744403]
  149. Corremans R et al (2023) Metformin and canagliflozin are equally renoprotective in diabetic kidney disease but have no synergistic effect. Int J Mol Sci 24(10)
  150. Widjaja AA et al (2022) IL11 stimulates ERK/P90RSK to inhibit LKB1/AMPK and activate mTOR initiating a mesenchymal program in stromal, epithelial, and cancer cells. iScience 25(8):104806
  151. Zhu Z et al (2023) Metformin improves fibroblast metabolism and ameliorates arthrofibrosis in rats. J Orthop Translat 40:92–103 [PMID: 37457314]
  152. Lei R et al (2019) Metformin inhibits epithelial-to-mesenchymal transition of keloid fibroblasts via the HIF-1α/PKM2 signaling pathway. Int J Med Sci 16(7):960–966 [PMID: 31341409]

MeSH Term

Animals
Scleroderma, Systemic
Fibrosis
Autoimmune Diseases
Signal Transduction

Word Cloud

Created with Highcharts 10.0.0diseasepathwayssclerosisnewSystemicfibrosishugeperturbedcurrentlytargetsEmergingsignallingcantargetedrepurposeddrugsautoimmuneconnectivetissuecharacterisedvascularperturbationsinflammationAlthoughprogressrecentlyunderlyingmoleculartherapyexistselementconsequentlyunmetmedicalneedstudiesrevealdimensionscomplexitymultipleaberrantuncoveredshedlightdisturbedprimarilyinflammatoryPre-clinicalanimalmodelsusinginhibitorsyieldedproofconcepttargetingsystemsprogressingclinicaltrialsreviewwillexaminerecentevidenceSSctargetintractabletherapeuticsystemicAnifrolumabRiociguat

Similar Articles

Cited By (1)