Spatial Analysis Reveals Vascular Changes in Retinal and Choroidal Vessel Perfusion in Intermediate AMD With Reticular Pseudodrusen.

Judy Nam, Lisa Nivison-Smith, Matt Trinh
Author Information
  1. Judy Nam: School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
  2. Lisa Nivison-Smith: School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
  3. Matt Trinh: School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.

Abstract

Purpose: To examine the effect of reticular pseudodrusen (RPD) on retinal and choroidal vessel perfusion (VP) topography in intermediate age-related macular degeneration (iAMD) using refined spatial analyses.
Methods: This was a retrospective cross-sectional study of 120 individuals with 30 iAMDRPD, 60 iAMDno_RPD, and 30 normal eyes, propensity-score matched by age, sex, and presence of cardiovascular-related disease. VP of the superficial and deep retinal and choriocapillaris vascular slabs was assessed from 6 × 6-mm optical coherence tomography angiography (OCTA) scans divided into 126 × 126 grids, with adjustment for various person- and eye-level factors. Grid-wise VP differences (%) among the groups were spatially assessed according to analyses based on the Early Treatment for Diabetic Retinopathy Study (ETDRS), eccentricity (µm), and degree (°).
Results: VP was significantly decreased between iAMDRPD and iAMDno_RPD, across all vascular slabs in various ETDRS sectors (up to -2.16%; 95% confidence interval, -2.99 to -1.34; P < 0.05). Eccentricity analyses revealed more complex patterns: a bisegmented relationship where VP in iAMDRPD eyes decreased linearly toward 1000 µm then returned toward similar values as iAMDno_RPD, plateauing around 2000 µm in the superficial and 3000 µm in the deep retina (R2 = 0.57-0.9; P < 0.001). Degree-based analysis further showed that the greatest VP differences in iAMDRPD eyes were commonly located superiorly and nasally across all vascular slabs (P < 0.05).
Conclusions: RPD appears to compound the vascular impact of iAMD, displaying complex spatial patterns beyond the ETDRS sectors. This highlights the importance of considering spatial delineations for future work regarding the role of RPD and vascular dysfunction.

References

  1. Ophthalmology. 2013 Apr;120(4):844-51 [PMID: 23332590]
  2. Invest Ophthalmol Vis Sci. 2021 Apr 1;62(4):2 [PMID: 33792619]
  3. Antioxidants (Basel). 2020 Aug 17;9(8): [PMID: 32824523]
  4. Sci Rep. 2021 Sep 14;11(1):18227 [PMID: 34521974]
  5. Sci Rep. 2017 Feb 10;7:42201 [PMID: 28186181]
  6. Ophthalmol Retina. 2021 Aug;5(8):721-729 [PMID: 33387684]
  7. Retina. 2021 Apr 1;41(4):686-693 [PMID: 33009219]
  8. Ophthalmology. 2016 Jul;123(7):1530-40 [PMID: 27040149]
  9. Surv Ophthalmol. 2018 Nov - Dec;63(6):782-815 [PMID: 29859199]
  10. Neuroophthalmology. 2019 May 27;43(6):382-390 [PMID: 32165897]
  11. Sci Rep. 2017 Apr 13;7:46396 [PMID: 28406171]
  12. Acta Neuropathol. 1981;53(4):299-318 [PMID: 7223373]
  13. Ophthalmology. 2017 Dec;124(12):1764-1777 [PMID: 28847641]
  14. Ophthalmology. 2022 Oct;129(10):1107-1119 [PMID: 35660417]
  15. Invest Ophthalmol Vis Sci. 2023 Apr 3;64(4):15 [PMID: 37052925]
  16. Ophthalmology. 2019 Dec;126(12):1667-1674 [PMID: 31281056]
  17. J Comp Neurol. 1991 Oct 22;312(4):610-24 [PMID: 1722224]
  18. Ophthalmology. 2010 Sep;117(9):1775-81 [PMID: 20472293]
  19. Invest Ophthalmol Vis Sci. 2022 Oct 3;63(11):12 [PMID: 36251316]
  20. Clin Exp Ophthalmol. 2015 May-Jun;43(4):308-19 [PMID: 25362898]
  21. Eye (Lond). 2019 Mar;33(3):428-434 [PMID: 30310161]
  22. Ophthalmol Retina. 2023 Dec 27;: [PMID: 38154619]
  23. Transl Vis Sci Technol. 2019 Aug 07;8(4):20 [PMID: 31404428]
  24. Ophthalmic Physiol Opt. 2017 Nov;37(6):661-668 [PMID: 29044669]
  25. Eur J Ophthalmol. 2021 Mar;31(2):505-513 [PMID: 32338527]
  26. Invest Ophthalmol Vis Sci. 2015 Jun;56(6):3976-83 [PMID: 26087362]
  27. Ophthalmol Ther. 2018 Jun;7(1):101-107 [PMID: 29383674]
  28. Invest Ophthalmol Vis Sci. 2021 Oct 4;62(13):13 [PMID: 34661608]
  29. Br J Ophthalmol. 2018 Apr;102(4):483-489 [PMID: 28822985]
  30. BMC Ophthalmol. 2018 Jul 28;18(1):184 [PMID: 30055588]
  31. Med Care. 1982 Sep;20(9):959-66 [PMID: 7121100]
  32. Clin Exp Optom. 2019 Sep;102(5):455-462 [PMID: 30298528]
  33. Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):203-211 [PMID: 29340648]
  34. Prog Retin Eye Res. 2022 May;88:101017 [PMID: 34752916]
  35. Invest Ophthalmol Vis Sci. 2012 Aug 17;53(9):5728-36 [PMID: 22836777]
  36. Invest Ophthalmol Vis Sci. 2022 May 2;63(5):36 [PMID: 35622354]
  37. J Comp Neurol. 1990 Feb 22;292(4):497-523 [PMID: 2324310]
  38. Ophthalmology. 2011 Feb;118(2):241-8.e1 [PMID: 20920824]
  39. Ophthalmology. 2016 Mar;123(3):599-608 [PMID: 26681391]
  40. Transl Vis Sci Technol. 2023 Sep 1;12(9):6 [PMID: 37676679]
  41. Invest Ophthalmol Vis Sci. 2022 Nov 01;63(12):1 [PMID: 36318196]
  42. Stat Sci. 2010 Feb 1;25(1):1-21 [PMID: 20871802]
  43. JAMA Ophthalmol. 2020 Jul 1;138(7):740-747 [PMID: 32379287]
  44. Clin Exp Optom. 2021 Sep;104(7):795-804 [PMID: 33689627]
  45. J Intern Med. 2014 Aug;276(2):140-53 [PMID: 24581182]
  46. Prog Retin Eye Res. 2020 Jul;77:100828 [PMID: 31911236]
  47. Fam Med Community Health. 2020 Feb 16;8(1):e000262 [PMID: 32148735]
  48. Invest Ophthalmol Vis Sci. 2021 Jul 1;62(9):22 [PMID: 34259817]
  49. Prog Retin Eye Res. 2021 Jan;80:100878 [PMID: 32712135]
  50. Am J Ophthalmol. 2017 Feb;174:42-55 [PMID: 27794427]
  51. Ophthalmology. 2019 Dec;126(12):1659-1666 [PMID: 31558345]
  52. PLoS One. 2013 Dec 31;8(12):e83759 [PMID: 24391822]
  53. Ophthalmic Res. 2023;66(1):885-891 [PMID: 37271137]
  54. Behav Ecol Sociobiol. 2020;74(8):100 [PMID: 32728310]
  55. J Comp Neurol. 1990 Oct 1;300(1):5-25 [PMID: 2229487]
  56. Invest Ophthalmol Vis Sci. 2019 Jul 1;60(8):2848-2859 [PMID: 31260035]
  57. Vision Res. 2017 Oct;139:65-71 [PMID: 28438678]
  58. Biomed Opt Express. 2015 Sep 28;6(10):4130-43 [PMID: 26504660]
  59. BMJ. 2008 May 3;336(7651):995-8 [PMID: 18456631]
  60. JAMA Ophthalmol. 2019 Jul 1;137(7):738-744 [PMID: 31021381]
  61. Br J Ophthalmol. 2018 Sep;102(9):1192-1198 [PMID: 29363531]
  62. PLoS One. 2018 Oct 18;13(10):e0205773 [PMID: 30335815]
  63. Am J Ophthalmol. 2015 Sep;160(3):602-607.e1 [PMID: 26052088]
  64. Invest Ophthalmol Vis Sci. 2016 Mar;57(3):1310-6 [PMID: 26998717]
  65. Ophthalmic Physiol Opt. 2016 Nov;36(6):632-642 [PMID: 27790767]

MeSH Term

Humans
Cross-Sectional Studies
Retrospective Studies
Perfusion
Retina
Retinal Drusen
Macular Degeneration
Diabetic Retinopathy
Cardiovascular Diseases

Word Cloud

Created with Highcharts 10.0.0VPvasculariAMDRPD0RPDspatialanalysesiAMDno_RPDeyesslabsETDRSµmP<retinaliAMD30superficialdeepassessed×126variousdifferencesdecreasedacrosssectors-205complextowardPurpose:examineeffectreticularpseudodrusenchoroidalvesselperfusiontopographyintermediateage-relatedmaculardegenerationusingrefinedMethods:retrospectivecross-sectionalstudy120individuals60normalpropensity-scorematchedagesexpresencecardiovascular-relateddiseasechoriocapillaris66-mmopticalcoherencetomographyangiographyOCTAscansdividedgridsadjustmentperson-eye-levelfactorsGrid-wise%amonggroupsspatiallyaccordingbasedEarlyTreatmentDiabeticRetinopathyStudyeccentricitydegree°Results:significantly16%95%confidenceinterval99-134Eccentricityrevealedpatterns:bisegmentedrelationshiplinearly1000 µmreturnedsimilarvaluesplateauingaround20003000retinaR2=57-09001Degree-basedanalysisshowedgreatestcommonlylocatedsuperiorlynasallyConclusions:appearscompoundimpactdisplayingpatternsbeyondhighlightsimportanceconsideringdelineationsfutureworkregardingroledysfunctionSpatialAnalysisRevealsVascularChangesRetinalChoroidalVesselPerfusionIntermediateAMDReticularPseudodrusen

Similar Articles

Cited By