Perovskite materials in X-ray detection and imaging: recent progress, challenges, and future prospects.

Md Helal Miah, Mayeen Uddin Khandaker, Mohammad Aminul Islam, Mohammad Nur-E-Alam, Hamid Osman, Md Habib Ullah
Author Information
  1. Md Helal Miah: Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University Bandar Sunway 47500 Selangor Malaysia. ORCID
  2. Mayeen Uddin Khandaker: Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University Bandar Sunway 47500 Selangor Malaysia. ORCID
  3. Mohammad Aminul Islam: Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya Kuala Lumpur 50603 Selangor Malaysia.
  4. Mohammad Nur-E-Alam: Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN Kajang 43000 Selangor Malaysia.
  5. Hamid Osman: Department of Radiological Sciences, College of Applied Medical Sciences, Taif University 21944 Taif Saudi Arabia. ORCID
  6. Md Habib Ullah: Department of Physics, Faculty of Science and Technology, American International University-Bangladesh 408/1, Kuratoli, Khilkhet Dhaka 1229 Bangladesh. ORCID

Abstract

Perovskite materials have attracted significant attention as innovative and efficient X-ray detectors owing to their unique properties compared to traditional X-ray detectors. Herein, chronologically, we present an in-depth analysis of X-ray detection technologies employing organic-inorganic hybrids (OIHs), all-inorganic and lead-free Perovskite material-based single crystals (SCs), thin/thick films and wafers. Particularly, this review systematically scrutinizes the advancement of the diverse synthesis methods, structural modifications, and device architectures exploited to enhance the radiation sensing performance. In addition, a critical analysis of the crucial factors affecting the performance of the devices is also provided. Our findings revealed that the improvement from single crystallization techniques dominated the film and wafer growth techniques. The probable reason for this is that SC-based devices display a lower trap density, higher resistivity, large carrier mobility and lifetime compared to film- and wafer-based devices. Ultimately, devices with SCs showed outstanding sensitivity and the lowest detectable dose rate (LDDR). These results are superior to some traditional X-ray detectors such as amorphous selenium and CZT. In addition, the limited performance of film-based devices is attributed to the defect formation in the bulk film, surfaces, and grain boundaries. However, wafer-based devices showed the worst performance because of the formation of voids, which impede the movement of charge carriers. We also observed that by performing structural modification, various research groups achieved high-performance devices together with stability. Finally, by fusing the findings from diverse research works, we provide a valuable resource for researchers in the field of X-ray detection, imaging and materials science. Ultimately, this review will serve as a roadmap for directing the difficulties associated with Perovskite materials in X-ray detection and imaging, proposing insights into the recent status, challenges, and promising directions for future research.

References

  1. Nat Commun. 2019 Mar 6;10(1):1066 [PMID: 30842411]
  2. Adv Sci (Weinh). 2022 Nov 13;:e2204512 [PMID: 36372541]
  3. Nat Commun. 2020 May 1;11(1):2136 [PMID: 32358502]
  4. Faraday Discuss. 2014;174:219-34 [PMID: 25485676]
  5. Adv Mater. 2020 Oct;32(43):e2004506 [PMID: 32945033]
  6. Adv Sci (Weinh). 2020 Oct 11;7(22):2002098 [PMID: 33240765]
  7. Science. 2015 May 8;348(6235):683-6 [PMID: 25931446]
  8. Pattern Recognit. 2022 Apr;124:108452 [PMID: 34848897]
  9. ACS Appl Mater Interfaces. 2023 Aug 9;15(31):37640-37648 [PMID: 37491709]
  10. Nat Photonics. 2015 Jul;9(7):444-449 [PMID: 28553368]
  11. Adv Mater. 2019 Jul;31(30):e1901644 [PMID: 31169936]
  12. Adv Mater. 2020 Oct;32(42):e2003353 [PMID: 32930461]
  13. Nanotechnology. 2020 Apr 10;31(15):152001 [PMID: 31751955]
  14. Adv Sci (Weinh). 2021 Nov;8(21):e2102730 [PMID: 34495577]
  15. Adv Mater. 2016 Nov;28(41):9204-9209 [PMID: 27569400]
  16. Nature. 2013 Sep 19;501(7467):395-8 [PMID: 24025775]
  17. J Am Chem Soc. 2009 May 6;131(17):6050-1 [PMID: 19366264]
  18. Sensors (Basel). 2011;11(5):5112-57 [PMID: 22163893]
  19. Nature. 2017 Oct 4;550(7674):87-91 [PMID: 28980632]
  20. Nat Commun. 2021 Mar 9;12(1):1531 [PMID: 33750768]
  21. Science. 2015 Jan 30;347(6221):519-22 [PMID: 25635092]
  22. Nano Res. 2023 Feb 20;:1-7 [PMID: 37359075]
  23. J Am Chem Soc. 2017 Jun 14;139(23):7939-7951 [PMID: 28505443]
  24. Nat Commun. 2016 Oct 06;7:13063 [PMID: 27708274]
  25. J Phys Chem Lett. 2021 Feb 25;12(7):1778-1785 [PMID: 33576232]
  26. Angew Chem Int Ed Engl. 2019 Dec 2;58(49):17834-17842 [PMID: 31549478]
  27. Nat Commun. 2021 Mar 16;12(1):1686 [PMID: 33727538]
  28. Nanomaterials (Basel). 2023 Jul 07;13(13): [PMID: 37446540]
  29. ACS Appl Mater Interfaces. 2022 Feb 23;14(7):9340-9351 [PMID: 35133123]
  30. Radiology. 2020 Jun;295(3):200463 [PMID: 32077789]
  31. Adv Sci (Weinh). 2022 May;9(15):e2103735 [PMID: 35319817]
  32. Adv Mater. 2020 Jun;32(24):e1907257 [PMID: 32383310]
  33. Adv Mater. 2012 May 2;24(17):2289-93 [PMID: 22451192]
  34. J Synchrotron Radiat. 2006 Mar;13(Pt 2):143-50 [PMID: 16495614]
  35. Science. 2015 Jan 30;347(6221):522-5 [PMID: 25635093]
  36. Materials (Basel). 2023 Feb 21;16(5): [PMID: 36902899]
  37. Adv Mater. 2018 Nov;30(46):e1804450 [PMID: 30295967]
  38. Inorg Chem. 2013 Aug 5;52(15):9019-38 [PMID: 23834108]
  39. Adv Mater. 2023 Jun;35(25):e2211840 [PMID: 36943095]
  40. Nat Commun. 2019 Apr 30;10(1):1989 [PMID: 31040278]
  41. Nano Lett. 2017 Mar 8;17(3):1727-1732 [PMID: 28240556]
  42. Adv Mater. 2023 Aug;35(31):e2210878 [PMID: 37146980]
  43. J Formos Med Assoc. 2020 May;119(5):990-992 [PMID: 32307320]
  44. Sci Technol Adv Mater. 2014 Apr 8;15(2):024203 [PMID: 27877656]
  45. Nanoscale. 2023 Apr 6;15(14):6664-6672 [PMID: 36916503]
  46. Nat Commun. 2015 Jul 06;6:7586 [PMID: 26145157]
  47. RSC Adv. 2023 Jun 7;13(25):17130-17142 [PMID: 37293469]
  48. Chem Commun (Camb). 2023 Jul 25;59(60):9239-9242 [PMID: 37424337]
  49. Adv Mater. 2022 Mar;34(12):e2106562 [PMID: 35062044]
  50. Small. 2023 Dec;19(52):e2305357 [PMID: 37635124]
  51. Science. 2015 Feb 27;347(6225):967-70 [PMID: 25636799]
  52. Angew Chem Int Ed Engl. 2020 Oct 12;59(42):18605-18610 [PMID: 32777154]
  53. Nanotechnology. 2017 Sep 8;28(36):365601 [PMID: 28660857]
  54. ACS Appl Mater Interfaces. 2022 Dec 14;14(49):54867-54875 [PMID: 36449273]
  55. Adv Mater. 2015 Nov 25;27(44):7213-20 [PMID: 26445101]
  56. Light Sci Appl. 2020 Jun 30;9:112 [PMID: 32637079]
  57. Chem Soc Rev. 2017 Aug 29;46(17):5204-5236 [PMID: 28795697]
  58. Angew Chem Int Ed Engl. 2023 May 2;62(19):e202302435 [PMID: 36892282]
  59. Chem Asian J. 2016 Oct 6;11(19):2675-2679 [PMID: 27167189]
  60. ACS Appl Mater Interfaces. 2020 Apr 8;12(14):16592-16600 [PMID: 32216332]
  61. Adv Mater. 2019 Nov;31(44):e1904405 [PMID: 31523875]
  62. Nature. 2021 Oct;598(7881):444-450 [PMID: 34671136]
  63. Nanotechnology. 2022 May 13;33(31): [PMID: 35443239]
  64. Adv Mater. 2024 Jan;36(3):e2303738 [PMID: 38009773]
  65. Adv Mater. 2023 May;35(18):e2211977 [PMID: 36802105]
  66. N Engl J Med. 2020 May 7;382(19):1860 [PMID: 32220203]
  67. ACS Appl Mater Interfaces. 2022 May 4;14(17):19795-19805 [PMID: 35417120]
  68. Nature. 2018 Sep;561(7721):88-93 [PMID: 30150772]
  69. Adv Mater. 2020 Aug;32(31):e2001981 [PMID: 32588518]
  70. Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202304638 [PMID: 37258939]
  71. Nat Commun. 2018 Jul 26;9(1):2926 [PMID: 30050037]
  72. Angew Chem Int Ed Engl. 2020 Aug 10;59(33):13879-13884 [PMID: 32383484]
  73. Adv Sci (Weinh). 2020 Nov 13;7(24):2002586 [PMID: 33344134]
  74. Adv Mater. 2020 Feb;32(7):e1905007 [PMID: 31814165]

Word Cloud

Created with Highcharts 10.0.0X-raydevicesmaterialsdetectionperformancedetectorsresearchPerovskitecomparedtraditionalanalysisperovskitesingleSCsreviewdiversestructuraladditionalsofindingstechniquesfilmwafer-basedUltimatelyshowedformationimagingrecentchallengesfutureattractedsignificantattentioninnovativeefficientowinguniquepropertiesHereinchronologicallypresentin-depthtechnologiesemployingorganic-inorganichybridsOIHsall-inorganiclead-freematerial-basedcrystalsthin/thickfilmswafersParticularlysystematicallyscrutinizesadvancementsynthesismethodsmodificationsdevicearchitecturesexploitedenhanceradiationsensingcriticalcrucialfactorsaffectingprovidedrevealedimprovementcrystallizationdominatedwafergrowthprobablereasonSC-baseddisplaylowertrapdensityhigherresistivitylargecarriermobilitylifetimefilm-outstandingsensitivitylowestdetectabledoserateLDDRresultssuperioramorphousseleniumCZTlimitedfilm-basedattributeddefectbulksurfacesgrainboundariesHoweverworstvoidsimpedemovementchargecarriersobservedperformingmodificationvariousgroupsachievedhigh-performancetogetherstabilityFinallyfusingworksprovidevaluableresourceresearchersfieldsciencewillserveroadmapdirectingdifficultiesassociatedproposinginsightsstatuspromisingdirectionsimaging:progressprospects

Similar Articles

Cited By (3)